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Abstract This paper describes a document recogni-
tion system for the modern neume based notation of

Byzantine music. We propose algorithms for page seg-

mentation, lyrics removal, syntactical symbol grouping
and the determination of characteristic page dimen-

sions. All algorithms are experimentally evaluated on

a variety of printed books for which we also give an op-
timal feature set for a nearest neighbour classifier. The

system is based on the Gamera framework for docu-

ment image analysis. Given that we cover all aspects of

the recognition process, the paper can also serve as an
illustration how a recognition system for a non standard

document type can be designed from scratch.

Keywords Optical Music Recognition (OMR) · Base

Line Detection

1 Introduction

Byzantine music is a neume based notation system

which uses a modal organisation/restructuration of

melodies. The sacred music of this repertory is more
commonly known as Psaltiki (Yaltik»). Its notation

has for long been used to describe the principal melodic

line, although it can theoretically be used as well for
polyphonic melodies (see [1] p. 222 for an example).

This notation system has gone through many stages,

the most recent one having been developed in the early

1800s in Constantinople (today known as Istanbul). As
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it is still in use today, we shall call it contemporary
psaltic notation (CPN).

As psaltic music is a very small niche in today’s

music business, there is not yet much research done on

its optical recognition. Most other approaches to early
music recognition like Pugin’s hidden Markov modeling

[3] rely on the presence of stafflines and are thus not

applicable to adiastematic neumatic notations. Barton
et al. have developed an experimental OCR system for

the recognition of Gregorian chant neumes within the

context of the NEUMES project [4]. They give little
details about the program except that it utilises neural

network techniques and provide no performance evalua-

tion, but conclude that OCR for early Gregorian chant

notation is of limited practical use due the inconsistent
use of symbols, which restricts shape and meaning of a

symbol to a particular manuscript source [5].

This restriction does not apply to CPN, which has

been standardised since about 1800. Concerning its op-
tical recognition, there is only the pioneering work of

Gezerlis who focused on the optical character recogni-

tion of individual neumes [6], but did not deal with page
segmentation and layout analysis. The aim of our work

is to provide algorithms not only for recognising indi-

vidual neumes, but also for their syntactical grouping
based on their grammatical function as well as for page

layout analysis and page segmentation.

We make the source code of our system freely avail-

able [9] as a toolkit for the Gamera framework [7]. Gam-
era is not itself a recognition system, but, rather, a cross

platform Python library for building custom recogni-

tion systems. It has already been used successfully not

only for building recognition systems for historic music
notations like renaissance lute tablature [10] and his-

toric text documents in the Navajo language [11] or

early modern Latin [12], but also for building a seg-
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Ref. No. Title Year Editor Pages

HA-1825 Heirmologion
Argon

1825 Chourmouzios
the Charto-
phylax

300

HS-1825 Heirmologion
Syntomon

1825 Chourmouzios
the Charto-
phylax

240

AM-1847 Anastasi-
matarion

1847 Theodoros
Papa
Paraschou
of Phoka

350

MP1-1850 Mousike
Pandekti,
Volume 1

1850 Teachers
of the
“Mousike
Bibliotheke”
collection

430

PPAM-1952 Patriarchiki
Phorminx:
Anastasi-
matarion

1952 Constantinos
Pringos

200

PPD-1969 Patriarchiki
Phorminx:

Doxastarion

1969 Constantinos
Pringos

350

Table 1 Prints of Psaltic music that appeared in Constantino-
ple and to which we have applied our recognition system. The
numbers are given for further reference in our text.

mentation evaluation framework for staff removal from

music images [13].

This paper is organised as follows: section 2 gives an

overview of the music notation and section 3 describes

all steps of our recognition system. All algorithms are
described and evaluated on sample pages from a variety

of printed books. In section 4, we present a summary of

the main ideas and experimental results, and in the final
section we make some critical comments and suggest

starting points for future improvements.

2 The Notational System for Psaltiki

This notation is described quite extensively in the orig-
inal literature [1]; for an introduction in English see

[2]. The particularity of CPN is that only the skele-

ton of the melodic line is written out according to well

defined orthography rules. During performance more
notes (embellishments) are added, which requires con-

siderable training beside a competent master. More re-

cent editions by 20th century composers extend the or-
thography rules so as to write out melodies in more de-

tail, yet always using the same CPN neumes. There are

hundreds of manuscripts and post 1800 classic editions,
some of which are listed in Table 1. Twentieth century

editions including written out embellishments are just

as numerous, as they describe the same repertoire as

the classic 1800s editions.

Some characteristics of CPN can be seen in Fig. 1
which shows musical neumes accompanied by Greek

lyrics below. Unlike in common western music nota-

tion, there is no staff system for specifying absolute

pitches, and melodic formulae are encoded using spe-
cific symbols (neumes). These convey information that

may be classified as quantitative (relative pitch), qual-

itative (melismatic vocalisations), temporal (dividing
and extending neume durations), modulative (fthora

and chroa, indicating modulation from one type of

tri-, tetra- or pentachord scale to another), intonative
(giving information as to the mode and musical gen-

der used: diatonic, chromatic or enharmonic), martyric

(giving “witness” attestations as to the relative pitch

and mode after several lines of neumes), metric (indi-
cating the type of temporal counting), rhythmic (with

diastoles and numbers indicating rhythmic changes),

chronagogic (tempo) and, more recently, isokratematic
(indicating the relative pitch of a second or even third

voice).

Martyrias

Primary NeumeNeume Group Linking NeumeBaseline

Fig. 1 Example of two lines of Psaltic notation using extended formular melodies (from HA-1825). The first symbol below the baseline

is the capital letter “rho”, which is not a musical neume, but belongs to the lyrics.
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Table 2: All individual neumes and their functions (P = can be primary, B =
defines baseline, L = linking, C = chronos neume, M = always a martyria scale
neume, m = can be a martyria scale neume)

No Neume Name No Neume Name

1 Ison PB 2 Oligon PB

3 Oxeia P 4 Petasti P

5 Kendima 6 Kendimata P

7 Hypsili 8 Apostrophos P

9 Elaphron P 10 Syneches-
Elaphron

P

11 Hyporrhoe P 12 Hamili P

13 Mono-Hemi-
Gorgon

14 Mono-Gorgon

15 Di-Hemi-Gorgon 16 Di-Gorgon

17 Klasma 18 Hapli (thick dot)

19 Stigmi (small
dot)

20 Koronis

21 Argon 22 Hemi-Olion

23 Di-Argon 24 Argon-Gorgon

25 Chi C 26 Leima Chronou P

27 Stavros 28 Comma

29 Bareia 30 Psiphiston

31 Anatinagma 32 Omalon L

33 Heteron L 34 Endophonon L

35 Hyphen-Ano L 36 Hyphen-Kato L

37 Diesis 38 Diesis-
Monogrammos

39 Diesis-
Digrammos

40 Hyphesis
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Table 2: (continued)

No Neume Name No Neume Name

41 Hyphesis-
Monogrammos

42 Hyphesis-
Digrammos

43 Diatonic-Hypo M 44 Diatonic-Hemi-
Phi

M

45 Diatonic-Lamda M 46 Diatonic-Na M

47 Diatonic-Delta M 48 Chromatic-
Large-Interval

M

49 Chromatic-Soft-
Large-Interval

m 50 Chromatic-Hard-
Large-Interval

m

51 Chroa-
Chromatic-Zygos

m 52 Diatonic-Ni-Kato

53 Diatonic-Pa 54 Diatonic-Bou

55 Diatonic-Ga 56 Diatonic-Di

57 Diatonic-Ke 58 Diatonic-Zo

59 Diatonic-Ni-Ano 60 Fthora-
Chromatic-Hard-
Small-Interval

61 Fthora-
Chromatic-Soft-
Small-Interval

62 Chroa-
Enharmonic-
Kliton

63 Enharmonic-Zo 64 Enharmonic-
Diarkes-Hyphesis

65 Enharmonic-
Diarkes-Diesis

66 Chroa-
Enharmonic-
Spathi

67 Diastole P 68 Diastolic
Hyphen-Ano

P

69 Diastolic
Hyphen-Kato

P 70 Int-0 P

71 Int-1 P 72 Pavla

73 Additionally the following text characters can occur as neumes:

– the lower case Greek letters
– the upper case Greek letters P B G D K Z N I M

– the arabic numerals 1 to 9 (“Diastole numbers”)
– paranthesis and square brackets
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There are about 100 different individual neumes,

which can be combined to form new neume groups. In
each group there is one primary neume, which typi-

cally lies upon the baseline; all the other neumes in the

same group are considered as secondary neumes. Some
neumes can never be primary, while others can be ei-

ther primary or secondary, depending on their relative

position.

All neumes belong to at least one neume group,
which can be classified as an “ordinary”, martyria or

chronagogic group. Even though “ordinary” groups ac-

tually can be further classified into melodic, pause,

rhythmic and metric neume groups, this distinction is
of no significance with respect to the neume group-

ing algorithm described in Sect. 3.5. While all neume

groups are independent of each other, there is a set of
neumes called linking neumes which may span over sev-

eral neume groups (typically not more than three) and

connect them. Such linking neumes can be occasion-
ally broken in classical editions due to line endings for

justification reasons.

Martyria groups (“witnesses”) consist of at least

two components: a Greek letter representing the note

name, and a martyria “appendix”, representative of the
scale and overall context within which the particular

note evolves. These two constituents specify the rel-

ative pitch (with respect to the starting point of the
melody). Depending on the edition, the uppermost of

the two symbols may be found on or below the base-

line. Yet, if other symbols are added as well (such as

diastoles and fthoras), the entire martyria group com-
ponents may span both above and below the baseline.

The particularity of martyrias lies in the fact that they

extend into the lyrics text zone, therefore creating a
special segmentation problem in separating lyrics from

martyrias. The same applies to chronagogic (tempo)

groups, which typically consist of the neume “Chi” plus
Gorgons and Argons.

Table 2 lists all neumes and their possible functions.

Some of these are Greek letters that can also appear in

lyrics lines. Several neumes can vary in width (Ison,

Anatinagma) or height (Diastole). All neumes marked
as P (“can be primary”) are primary neumes when they

intersect the baseline, with the notable exception of

Kendima and Bareia. A single Kendima is never pri-
mary, but belongs to the group before it, while a group

of two Kendimata on the baseline is primary. A Bareia

usually is a secondary neume belonging to the group
to its right, except when it is followed by one or more

dots, in which case it is a primary neume with the dots

(Hapli or Stigmi) belonging to its neume group.

The peculiarity of CPN that secondary symbols can

be attached to the left, right, top or bottom of other pri-

mary symbols lying on a baseline shows some similarity

to the “matras” in Hindi script that can be attached to
basic characters resulting in modified characters which

in turn can be combined into words [14]. The role of

the baseline in CPN corresponds to the header line in
Hindi script, with the notable difference that the CPN

baseline is imaginary (i.e. invisible), while the header

line in Hindi script is explicitly visible as an integral
part of the main characters. Concerning layout analy-

sis, an important difference is that in Hindi script the

groups (words) are easily identified as connected com-

ponents while the parts need to be determined by some
segmentation method [15]. In CPN, on the other hand,

it is the parts that are easily detectable as connected

components while the groups need to be determined
based on syntactic rules and class membership. Thus

Hindi script typically requires a top-down approach as

opposed to a bottom-up approach in CPN.

Psaltiki associates different melodic patterns to text

according to the distribution of the accentuated sylla-
bles. All this information constitues sequences that can

be encoded, classified, and searched much like biologi-

cal gene sequences and linguistic patterns that are used
in the transmission of memory: this forms an interest-

ing area of research for musical pattern analysis1. Fur-

thermore, its relationship to the Gregorian and Roman
chant repertories is an interesting area of research for

modern techniques of music information retrieval. In

order to build a database of Psaltic chant in a machine

readable format that can be used for such comparative
investigations, as well as for building a repository of

traditionally authentic formulae, an optical recognition

system for this type of notation would be of great help.

3 The Recognition System

Like most other document recognition systems, our

recognition system sequentially performs the five steps

preprocessing, segmentation, classification, neume lay-

out analysis and output generation. The task of the in-
dividual steps is:

1. During preprocessing, image defects due to low

printing or scan quality (rotation, noise) are im-

proved. Moreover, characteristic dimensions are de-

termined from the image; these can be utilised to
make subsequent steps independent from the scan-

ning resolution.

1 G.K. Michalakis: Le formulisme dans la transmission de la
mémoire de la psaltique et du chant grégorien: une approche
par la biologie moléculaire. Master Thesis, University of Poitiers,
France (in preparation)
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2. In the segmentation step, the individual symbols are

isolated, the page is segmented into text (lyrics) and
neume lines, and the text is removed.

3. In the classification step, the individual neumes are

recognised. This step assigns each neume a class la-
bel.

4. In the neume layout analysis, the mutual relation-

ship of the individual symbols is determined and
they are grouped, based on their class names and

relative positions.

5. Eventually, a machine readable output encoding is

generated.

In the subsequent sections we describe these steps in

detail and report their performance on the prints from
Table 1.

3.1 Preprocessing and Symbol Segmentation

As our primary method for detecting neume baselines

and lyrics textlines uses horizontal projections (see sec-
tion 3.3 below) it is important that a skew angle intro-

duced through scanning be corrected. This was achieved

with Postl’s projection profile method [16] which al-
ready has proven to be quite reliable for lute tablatures

[10]. The method determines the rotation angle α as

the angle with the highest variation of the skewed pro-

jection profile

hα(y) =

x=∞
∑

x=−∞

f(x cos α − y sinα, x sin α + y cos α)

where f(x, y) is the document image pixel value at po-

sition (round(x), round(y)) and zero outside the docu-

ment. The variation of this profile is defined as

V (α) = ||hα
′||2 =

y=∞
∑

y=−∞

[hα(y + 1) − hα(y)]
2

As a naive brute force search for the angle α that max-

imises V (α) would be rather slow, we did a brute force
search for the angle only at a coarse angle resolution

and then used the three points around the maximum

among these values as a starting point for a golden sec-

tion maximum search [17].

To improve the image quality, we removed noise con-

sisting of white and black speckles. White speckles were
typically small enough in our images to be removed

with a median filter using a 3x3 window [18], which, for

onebit images, is incidentally the same as an averaging

filter. Most black speckles, however, were too large to
be erased by the median filter and we identified and re-

moved them instead as connected components (CCs)

having a “small” black area. Ideally, “small” would

mean “small with respect to the characteristic page di-

mension oligon height” (see below). Unfortunately this
dimension can only be detected reliably after despeck-

ling because, when speckles are present, they can be

so frequent as to dominate the runlength histogram.
Hence, we used a hard coded speckle size of three black

pixels.

As all symbols in CPN are well separated and usu-
ally do not touch, individual symbols can be isolated

using a connected component (CC) extraction [19].

3.2 Characteristic Dimensions

To make all subsequent operations independent from

the scanning resolution, we determined two characteris-
tic dimensions for each page: oligon height, which corre-

sponds to the vertical stroke thickness of the wide, fre-

quently encountered neume Oligon, and oligon width,
which corresponds to the horizontal width of this same

neume.

In many diagram recognition problems, the stroke
thickness can be measured from the histogram of black

runlengths. For example, the staffline height in common

western music notation corresponds to the most fre-
quent black vertical runlength [13]. In the case of CPN

however, this histogram is dominated by thinner strokes

from lyrics, noise and different neumes (see Fig. 2). As

the most characteristic feature of the Oligon is that it
is significantly wider than high, we created filtered im-

ages in which CCs with a ratio width/height less than

three had been removed. This filtering is independent
of the scanning resolution because the aspect ratio is

scale invariant.

The neume distribution among the remaining wide
CCs is shown in Table 3: the most frequent wide neume

is the Oligon, followed by the Ison. Both neumes to-

gether form the majority of all wide CCs on each page.

ru
n
le

n
g
th

 c
o
u
n
t

runlength

oligon_height

only wide CCs

 5  15  25

all CCs

Fig. 2 Black vertical runlength histogram for a complete
CPN image (solid) and the same image with all CCs with

width/height < 3 removed (dashed).
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Source HA-1825 HS-1825 AM-1847 MP1-1850 PPAM-1952 PPD-1969

oligon height 15.8 ± 0.4 16.7 ± 0.7 13.4 ± 1.0 17.5 ± 1.0 13.0 ± 0.5 15.0 ± 0.0

oligon width 132.8 ± 1.1 136.4 ± 7.0 122.0 ± 2.6 152.5 ± 2.5 125.1 ± 2.5 163.3 ± 3.5

Table 4 Averages and standard deviations of the characteristic dimensions as measured with our algorithm on 25-30 pages from each
book.

Neume Minimum Maximum Mean ± Stddev

number of wide

CCs per page

76 127 104 ± 14

oligon 36.5% 68.4% 53.5% ± 7.9%

ison 2.6% 45.9% 23.9% ± 9.9%

psiphiston 1.9% 21.1% 10.0% ± 4.2%

other 0.0% 15.6% 6.4% ± 3.4%

anatinagma 0.0% 11.4% 4.8% ± 3.6%
omalon 0.0% 9.7% 1.5% ± 2.4%

ison or oligon 63.1% 86.7% 77.3% ± 6.0%

Table 3 Per-page distribution of CCs with width/height ≥ 3.0
counted on 48 pages from the books listed in Table 1. Note that

the minimum percentages of different neumes usually occur on

different pages, so that all percentages in the “Minimum” col-
umn do not add up to 100. The same applies to the “Maximum”

column.

As both the width and the vertical stroke thickness of

Oligon and Ison are comparable, we can determine the
characteristic dimensions from the filtered image as fol-

lows:

– oligon height is the most frequent black vertical run-

length (see Fig. 2)
– oligon width is the median of the CC width

These values turned out to be quite stable in our ex-

periments over different pages, as can be seen from the

low standard deviations in Table 4: even the largest
mean error for oligon width in source HS-1825 is only

about 5%. For all other sources the variances are much

smaller. The robustness of these two values makes them
appropriate base units for thresholds used in subse-

quent rule based decisions.

3.3 Page Segmentation

The page segmentation step consists of the following

tasks, which we describe in detail in the corresponding

subsections:

– detection of the baselines around which the neumes
are grouped

– detection of the text (lyrics) lines between the base-

lines
– lyrics removal

3.3.1 Page Layout Analysis and Lyrics Removal

Neume baselines are the lines around which the frequent

neumes Oligon and Ison are aggregated. Consequently,
they can be detected by an analysis of the horizontal

projection profile of the image containing CCs with a

width/height ratio greater than three (see Fig. 3), be-

cause this projection profile is dominated by Isons and
Oligons, as we have shown in the preceding section.

Baselines correspond to maxima in the projection pro-

file with a height greater than 0.8 times oligon width. As
this criterion can yield more maxima than correspond-

ing baselines, we first applied a low-pass filter of width

oligon height to the projection profile. For each projec-
tion value greater than 0.8 times oligon width found at

height y, we only selected the largest maximum within a

window [y, y+oligon width). As an additional constraint

we demanded that the distance between two baselines
be larger than one oligon width. This threshold is based

on the reasoning that baselines cannot be closer due to

the height of neume groups and due to the lyrics line
between adjacent baselines.

While searching for a maximum in the projection

profile of the unfiltered image, textlines can be found
between two baselines, close to the middle. Due to

the characteristic shapes of the Greek characters, the

largest maximum will always be at the upper or lower
edge of the lower case letters. To make our textline more

robust with respect to curvature, we interpolated be-

tween the two largest maxima near the centre between
adjacent baselines.

The algorithm described above yields a single y-

position for each baseline and textline. This implies
that the image is not too strongly rotated or curved.

Although we have found this condition to be met after

number of black pixels

y−
p
o
si

ti
o
n
 (

ro
w

)

only wide CCs

all CCs

detected baseline

detected textline

Fig. 3 Neume baselines correspond to maxima in the projection
profile of only the wide CCs (black). Textlines can be detected

from maxima in the projection profile of all CCs (black and grey).
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applying the rotation correction (described in Sect. 3.1)

in the prints on which we have worked (see Table 1), it
should be noted that this does not hold in general, in

particular when manuscripts are considered.

The simplest approach for lyrics removal would be
to remove all CCs that cross the textline. This would,

however, also remove part of martyria and chronos

signs, both of which contain components that overlap
with lyrics lines, as can be seen in Fig. 1. To distinguish

martyrias from lyrics we tested two different methods,

one based on a trained classifier, and the other based
on pre-defined rules.

The training based approach requires that lyric

glyphs be trained as “lyrics” and that all CCs on the

image be classified (see section 3.4). As some of these
glyphs can also be part of neume groups, we cannot

simply remove all glyphs recognised as “lyrics”, but

must first look for glyphs recognised as “martyria”
(or “martyria-fthora” or “chronos”). Each glyph that

touches the textline and is not itself a “martyria” and

is not below or above a glyph recognised as a martyria
is considered as being part of the lyrics and is removed.

In the rule based approach, we first determined the

lyrics character height (character height) as the median
height of all glyphs touching the textlines. All glyphs

touching the textline were removed, unless they met

one of the following criteria:

– there is no glyph on the baseline above
– the glyph’s upper edge rises above the baseline more

than 1.5 * character height

– the glyph has a width/height ratio greater than 2.2

The last two criteria avoid that two types of neumes,

that frequently extend into the lyrics region, are inad-

vertantly removed: the second criterion is for Bareias
which generally cross the baseline and the third crite-

rion is for linking neumes which can be distinguished

from Greek characters by their width (see Table 2).

Theoretically, lyrics always need neumes on the
baseline above, so that glyphs meeting the first crite-

rion could not be lyrics. In our sources however, lyrics

were often not well aligned with the neumes, and this
required an additional criterion. We therefore utilised

the fact that martyria groups always consist of two ver-

tically stacked components (see Fig. 1); the same holds
for chronos groups. Consequently, we only consider a

neume meeting the first criterion a martyria or chronos

neume when a second component is found above it with

the following properties:

– It is narrower than 0.75 * oligon width. This rules

out wide secondary neumes, which tend to extend

beyond the primary neume due to their width.

– It is less than a vertical distance of 1.5 * charac-

ter height above. Neumes too far apart are not per-
ceived as a connected group by a reader and thus

are unlikely to be meant as group.

– The total height of both glyphs is greater than 2 *
character height. This is necessary to avoid confu-

sion with broken lyrics characters and noise.

The numerical threshold values have been chosen

heuristically so that a number of common decision er-

rors on selected pages from the different prints could be

minimised.
In our experiments described in the next section,

the rule based approach was slightly better, though not

significantly so. This does not mean however, that a
training based approach generally performs poorer. It

may as well be due to insufficient training data. Con-

cerning deterministic approaches to lyrics removal, the
adaption of other sophisticated page layout analysis al-

gorithms originally developed for text documents might

be a potentially promising area of future research [20].

3.3.2 Results

We tested the baseline and textline detection algorithm

on 65 random pages from the six prints listed in Table

1. From a total of 764 baselines only 2 were missed and
no non-existent baseline was falsely found. For each de-

tected baseline the corresponding textline was correctly

identified.

That baselines were missed was due to a systematic
error that occurs when a baseline does not contain any

ison or oligon at all, in which case no neumes from that

line remain after filtering the wide CCs before baseline
detection. This can occur when a melodic line is only

partially filled with a melodic formula that coinciden-

tally contains no ison or oligon.
To compare the quality of our alternative algorithms

for lyrics removal, we first manually removed the lyrics

from 10 random pages for each source of Table 1, re-

sulting in a total of 60 test pages. For both algorithms
(training and rule based, respectively) we counted the

number of non-removed connected components (CCs)

that were lyrics (“missed” CCs) and the number of
falsely removed CCs that were not lyrics (“excess”

CCs). As the images still contained considerable noise

even after the preprocessing described in Sect. 3.1, we
only counted CCs taller than oligon height.

The results are listed in Table 5 together with the

results for the simple algorithm of removing all CCs

touching the textline (±character height/2 to allow for
slight curvature). It can be seen that the latter algo-

rithm removes many glyphs that are not lyrics. Even

though the other two algorithms introduce additional
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all true textline touching training based rule based
Source lyrics CCs missed excess error missed excess error missed excess error

HA-1825 3163 37 120 4.95% 48 5 1.68% 62 9 2.24%
HS-1825 3508 33 134 4.76% 80 11 2.59% 52 5 1.62%

AM-1847 3601 56 146 5.61% 90 32 3.39% 103 32 3.75%

MP1-1850 3117 102 99 6.45% 149 24 5.55% 155 9 5.26%

PPAM-1952 2684 8 140 5.51% 38 7 1.68% 24 11 1.30%

PPD-1969 3304 34 67 3.06% 68 11 2.39% 55 7 1.88%

Total sum 19377 270 706 5.03% 473 90 2.91% 451 73 2.70%

Table 5 Numbers of wrongly classified CCs for the simple lyrics removal algorithm that removes all CCs touching the textline, as well as

for the other two more sophisticated algorithms on 10 sample pages from each source and the resulting error rates (missed+excess)/all.

errors by not removing some lyrics, they lead to a sig-
nificant reduction of the error rate with the rule based

approach having the fewest errors overall.

Nevertheless, when pages are compared individu-

ally, there are those for which the training based algo-
rithm was better. To test whether the overall error rate

difference is significant, we used the statistical paired

model proposed by Mao and Kanungo [21]. For each of

the n test pages (n = 60 in our case), we computed
the difference W of the error rates between both algo-

rithms. Under the assumption that these observations

are independent for different test images, Mao and Ka-
nungo have argued that a confidence interval for the

true mean difference ∆ at a given confidence level α is

given by

∆ ∈ W ± tα/2,n−1V√
n

where W and V 2 are the sample mean and variance

of the n observed W and tα/2,n−1 is the percentile of

the t distribution with n − 1 degrees of freedom. As
a condition for a statistically significant difference of

the error rates at a given confidence level α, Mao and

Kanungo give the following criterion

Pval =

∫ −|T |

−∞

f(t) dt +

∫ ∞

|T |

f(t) dt < α

where T = W
√

n/V and f(t) is the probability den-
sity function of the t distribution with n− 1 degrees of

freedom.

The results of this statistical estimation for the

“missed”, “excess” and “total” (missed + excess) error
rate are shown in Table 6. It turns out that, although

our rule based approach is on average slightly better,

this difference is not significant.

3.4 Individual Neume Classification

As already shown by Gezerlis, the individual neumes

can be recognised by a kNN classifier [6]. In designing

the classifier, two goals need to be achieved:

Error rate Difference Pval

missed lyrics -0.1702 ± 0.3928 0.3894

excess lyrics -0.0784 ± 0.1547 0.3148

missed + excess -0.2486 ± 0.4243 0.2457

Table 6 Error rate difference between our rule based and train-

ing based lyrics removal algorithms, estimated with a confidence
level α = 0.05 in the statistical paired model. A negative differ-
ence means that the rule based algorithm is better.

– The recognition system should be adaptable to a

wide range of Psaltiki sources: this requires an ap-

propriate abstraction layer in the training process.
– The classifier error rate should be low: this strongly

depends on the chosen feature set.

Both aspects are investigated in detail in the following

subsections.

3.4.1 Training Abstraction Layer

The kNN classifier requires that class names be trained
on sample images before the classification phase. While

Keyword Meaning

primary a neume that can be primary

linking a linking neume

secondaryright a secondary neume that always belongs
to the group to its right when it appears
on the baseline (normally isolated sec-
ondary neumes on the baseline are at-
tached to the group to their left, see
Fig. 4a)

martyria a martyria scale neume

martyria-fthora a neume that is a fthora when overlap-

ping with a primary neume and a mar-

tyria when no primary neume is above

it

chronos a chronos neume

dot symbol must be treated as a dot (has

variable meanings)

gorgon neume is a gorgon variant

trash symbol can be ignored completely

Table 7 Modifier keywords of class names for training neume
functions.
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Source HA-1825 AM-1847 MP1-1850 PPAM-1952 PPD-1969

number of glyphs 4081 4108 4288 6949 4375

glyphs in class “trash” 16.32% 50.17% 23.86% 63.23% 22.19%

glpyhs of six most frequent neumes 62.07% 33.64% 54.17% 24.03% 52.14%

number of classes 49 51 51 57 58

classes with < 3 glyphs 13 13 11 13 14

Table 8 Properties of the training data sets used in our kNN classifier for the different sources. In all sources the six most frequent

neumes are Apostrophos, Kendima, Oligon, Ison, Mono-Gorgon and Klasma.

it were possible to only rely on the class names from

Table 2 and their particular meaning in CPN as spec-
ified in [1], this would make the system very inflexible

with respect to notational variants and to the introduc-

tion of additional neumes. We therefore not only trained
neume names, but also neume functions (primary, link-

ing, ...) as optional attributes. These functions are spec-

ified as a set of optional keywords during training. The
supported keywords are listed in Table 7. In our imple-

mentation, the function keywords are conveyed through

the class name as an optional list of dot-separated fields

preceding the actual class name, e.g. primary.oligon.

3.4.2 Feature Selection

Gezerlis [6] used some features which are not built into
Gamera (Euler number, principal axis direction, dis-

crete wavelet transform). As reported by Gezerlis, these

features were not sufficient to distinguish a number of
different, but similar neumes. To tackle these confu-

sions, he used a postclassification scheme to handle the

different cases of confusion individually. On the other
hand, one of the authors has observed in his work on

the recognition of lute tablature prints that a selection

of features built into Gamera can lead to a holdout

recognition rate of over 99% [10]. Hence we have made
extensive experiments with these latter features which

show that they lead to a good recogniton rate for psaltic

neumes as well.

For each of the sources from Table 8, we created a
training data set for the kNN classifier. Source HS-1825

is missing in Table 8 because it uses the same typeface

as HA-1825, so that the same training data can be used
for both sources. In all training data sets, the class pop-

ulation ratios are representative for the sources from

which they are drawn. According to Davies [22], this

ensures that the a priori probabilities of the individ-
ual classes are correctly taken into account by a kNN

classifier.

Some properties of our training data are listed in Ta-

ble 8. The glyphs classified as “trash” are speckles that
still remain after our preprocessing operations. Their

frequency can be considered as a measure for degrada-

tions due to low print or scan quality. Each training

data set only contains about one fourth of all possi-

ble symbols, because not every symbol occurs in every
print and some symbols are very rare. Even among the

symbols occurring in our training sets, a considerable

number is represented with less than three glyphs. This
has the consequence that we cannot choose the number

k of neighbours in the kNN rule larger than one, leading

effectively to a nearest neighbour classifier rather than
a kNN classifier.

At the time of writing, Gamera provided 15 built in

features (see the Gamera documentation [8] for details),

of which the 14 features listed in Table 9 were useful
for segmentation based recognition. For our recognition

system, we chose the feature combination aspect ratio,

moments, nrows, volume64regions, because these had
the best “leave-one-out” performance in the experi-

ments described in the next section. It is interesting

to note that this feature combination also had an ex-
cellent “holdout” performance on lute tablature prints

[10], which leads us to the conjecture that these features

generally are a good choice for printed sources.

3.4.3 Experimental Results

We evaluated the performance of the individual fea-

tures on each training set with the “leave-one-out”
method, i.e. by classifying each training glyph against

the other training glyphs. The results are listed in Ta-

ble 9, which also gives the dimension of each feature, as

some features are actually vector values rather than a
single value. For all features, the performance values are

roughly comparable over all sources, with the notable

exception of nholes and nholes extended. These features
count the number of black-white transitions per row or

column and are thus very sensitive to white speckles,

resulting in a poor performance on the lowest quality
source PPAM-1952. The different values for the aver-

age runtime of the leave-one-out evaluation in the last

column are not only due to the different feature dimen-

sions, but also to the runtime complexity of the fea-
ture computation: e.g. the zernike moments [23] have a

longer runtime than volume64regions even though their

dimension is lower.
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Feature Dimen- Leave-one-out performance on the training sets Average
sion HA-1825 AM-1847 MP1-1850 PPAM-1952 PPD-1969 Runtime [s]

area 1 82.7% 81.8% 76.0% 88.1% 79.5% 0.44

aspect ratio 1 77.3% 77.0% 71.9% 83.1% 77.7% 0.41

black area 1 68.0% 68.7% 60.1% 78.3% 58.4% 0.52

compactness 1 44.4% 56.7% 41.6% 66.4% 50.4% 1.16

moments 9 97.2% 95.2% 96.3% 97.5% 97.1% 1.79

ncols 1 72.6% 74.2% 72.2% 84.0% 67.2% 0.44

nholes 2 69.7% 77.8% 71.3% 22.4% 71.9% 0.71

nholes extended 8 77.7% 85.2% 85.0% 28.1% 80.2% 1.54

nrows 1 63.3% 65.2% 52.8% 77.5% 46.4% 0.44

skeleton features 5 73.3% 73.8% 65.2% 79.6% 73.2% 4.52

volume 1 61.9% 66.1% 51.6% 72.3% 57.8% 0.57

volume16regions 16 98.6% 97.0% 97.8% 98.4% 97.7% 3.11

volume64regions 64 98.6% 97.8% 98.7% 98.9% 98.3% 13.81

zernike moments 26 97.7% 96.1% 96.1% 97.9% 97.1% 61.84

Table 9 kNN classifier performance of Gamera’s individual features on the training sets from Table 8 with k = 1.

Feature Combination Dimen- Performance on training sets

sion Avg Min Max

aspect ratio, moments, nrows, volume64regions 75 99.40% 99.05% 99.70%

aspect ratio, compactness, nrows, volume64regions 67 99.40% 99.03% 99.70%

aspect ratio, nrows, volume64regions 66 99.40% 99.00% 99.70%

aspect ratio, nrows, volume, volume64regions 67 99.39% 99.00% 99.70%

moments, nholes extended, nrows, volume64regions 82 99.38% 99.03% 99.61%

aspect ratio, nholes extended, nrows, volume64regions 74 99.38% 99.00% 99.68%

aspect ratio, nrows, volume16regions, volume64regions 82 99.38% 99.00% 99.68%

ncols, nholes extended, nrows, volume64regions 74 99.37% 99.17% 99.58%

Table 10 The eight best performing feature combinations on all training sets from Table 8 with a feature set size up to four.

The best performing feature is volume64regions with
an average recognition rate above 98%. This feature

simply counts the percentage of black pixels (“volume”)

in each cell of an 8× 8 grid. Although it is scale invari-

ant, it is not invariant to rotation or changing stroke po-
sitions. The latter variations are less likely to be found

in printed books than in manuscripts, and, by conse-

quence, the good performance on our sources (exclu-
sively printed books) is not surprising.

To further improve the recognition rate, we have

evaluated the leave-one-out error rates for feature com-

binations. As brute force testing of all possible com-
binations is exponential in the number of features, we

have only tested all combinations up to a feature set

size of four, because in experiments on lute tablature
prints the combination of more than four of Gamera’s

builtin features did not increase the recognition rate any

further [10]. Table 10 lists the eight best performing fea-
ture combinations on every training set. Each of these

combinations contains the individually best performing

volume64regions. It is interesting to note that in each

of the best performing combinations there is nrows or
ncols, which are the height or width of a glyph. This

leads us to the conclusion that the absolute size of a

symbol is also an important distinguishing feature in

our training sets. This is easily understandable because
speckles (classified as “trash” in our training sets) can

have any shape, yet are typically small.

Based on these results, we have chosen the fea-
ture combination aspect ratio, moments, nrows, vol-

ume64regions for our nearest neighbour classifier, be-

cause it is the best performing combination when Table

10 is sorted by Avg and Min.

3.4.4 Compound Neumes

Some neumes in Table 2 consist of more than one con-
nected component, some of which even have a different

meaning when appearing in combination (e.g. Kendima

versus Kendimata and Bareia versus Leima Chronou).

One approach would be to train the compound

neumes as “groups” in Gamera and let Gamera’s group-

ing algorithm [24] deal with them. This, however, re-
quires that the combinations appear sufficiently often

in all possible variants in the training data. Moreover,

the distance between their components must not be too

large, because otherwise the grouping algorithm will
have to test too many possible combinations, resulting

not only in a long runtime, but also in falsely detected

groups.
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We have therefore chosen a different approach and

added a post-processing step that replaces certain
neume combinations with a compound neume, based

upon a translation table. Entries in the translation ta-

ble are of the form

neume1,neume2,maxdist: neume3

This means that the adjacent neumes neume1 and

neume2 following each other in the horizontal direc-

tion with a bounding box distance of at most maxdist
* oligon height are to be replaced with the single,

pre-combined neume neume3. All such newly, post-

processing introduced compound neumes are treated

like any other neume in the subsequent layout analysis.

3.5 Neume Layout Analysis and Grouping

Once the various individual symbols have been recog-
nised, their mutual relationship needs to be determined.

Essentially this means organising the symbols as a lin-

ear sequence of neume groups. For each neume group,
a primary neume must be identified. Furthermore, each

linking neume must be attached to the appropriate

neume groups.

3.5.1 Rules for Neume Grouping

Neume groups are always separated by some space

on the baseline. All neumes trained as primary and

found on or near the baseline are considered as pri-
mary neumes: they form the core of a neume group.

When there are two primary neumes that overlap hor-

izontally, the larger one is considered as the primary

neume.

Once the primary neumes have been identified, the

neume groups are built as follows:

– secondary neumes are attached to the primary

neume with which they have the largest horizontal

overlap

– non primary neumes on the baseline are attached to
the group on the left, unless they have been trained

with the keyword secondaryright (see Table 7)

This grouping scheme cannot be used for the neumes

Gorgon (and its variants), the linking neumes and the
Gorgon associated dots, because they often extend into

the x-position of a neighbouring neume group (see

Fig. 4 b) and c)). These neumes must therefore be ig-
nored by the above grouping algorithm and must be

post-processed as follows:

– linking neumes are always associated to the right-

most group with which they overlap horizontally.

(a) Non-primary neumes lying on the the baseline usually belong

to the preceding group, like the Kendima in the example on the
right. However, some non-primary neumes belong to the following
group, just like the Bareia in the example on the left.

(b) Gorgons and associated dots may extend into the following
neume group

(c) Linking neumes are attached to the rightmost group with
which they overlap

Fig. 4 Special cases of the general neume layout analysis based
upon primary neume detection and horizontal overlaps

Note that this is just a simplifying assumption which

looses information in the (rare) case where more

than two groups are linked.
– Gorgons are associated with the leftmost neume

group with which they overlap horizontally

– any dot following or preceding a Gorgon is associ-

ated with the Gorgon

All neumes belonging to martyria and chronos
groups fall through the grouping scheme described

above because these neumes do not belong to any

primary class and do not overlap horizontally with
any primary neume. We can thus identify martyria or

chronos groups by joining all neumes that overlap hori-

zontally with neumes that are of a martyria or chronos
class.

All neumes still falling through the grouping scheme

(this may happen, e.g., for Diastoles) are considered as

groups of their own without a primary neume.

3.5.2 Results

We have measured the error rates both for the recogni-

tion of the individual neumes and for the neume group-
ing on 65 pages from the sources of Table 1. On all pages

we had manually removed the lyrics so that we could

investigate the recognition and grouping error rates in-
dependently from errors introduced through the auto-

mated lyrics removal described in Sect. 3.3.

For the recognition of the individual neumes we used

the nearest neighbour classifier with the feature set as-
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neume groups individual neumes
Source total errors error rate (%) total errors error rate (%)

HA-1825 1876 35 2.0 ± 0.6 3694 93 2.6 ± 0.5
HS-1825 1542 9 0.7 ± 0.4 2223 37 1.7 ± 0.5

AM-1847 1999 51 2.6 ± 0.7 3767 179 4.8 ± 0.7

MP1-1850 2150 61 2.9 ± 0.7 4464 99 2.3 ± 0.4

PPAM-1952 1900 30 1.7 ± 0.6 3324 108 3.3 ± 0.6

PPD-1969 2014 19 1.0 ± 0.4 3796 58 1.6 ± 0.4

Table 11 Error rates for the neume grouping and the recognition of the individual neumes. The recognition errors are the sum of

misread, unread, and excess neumes. The given confidence intervals are Agresti-Coull intervals for a confidence level α = 0.05.

pect ratio, moments, nrows, volume64regions in combi-

nation with Gamera’s grouping algorithm [24] with a

maximum group size of two components, i.e., only ad-
jacent pairs of glyphs were tested whether they “look

like” a broken variant of a single connected glyph in the

training set.
The results are listed in Table 11. In contrast to the

leave-one-out error rates of Table 10, the error rates

for the individual neume recognition are holdout error

rates, i.e., they are measured on test data different from
the training set. This means that the errors on the test

set are independent Bernoulli trials with an error prob-

ability p for misclassifying a neume or misgrouping a
group. As p is typically a low value, the classical (1−α)

confidence interval taught in introductory statistic text-

books can be expected to have a poor coverage prop-
erty, and we use the Agresti-Coull confidence interval

instead, as recommended by Brown et al. [25]:

p̃ ± z1−α/2 ·
√

p̃(1 − p̃)

ñ
where ñ = n+ z2

1−α/2
and p̃ = (k + z2

1−α/2
/2)/ñ with n

being the number of neumes or groups, k the number

of misclassified neumes or groups and z1−α/2 being the

(1 − α/2) percentile of the standard normal deviation.
It should be noted that this confidence interval is not

centred around the estimator k/n for the error rate, but

around the slightly higher value p̃. For α = 0.05, we

have z1−α/2 = 1.9600 ≈ 2, so that p̃ ≈ (k + 2)/(n + 4),
i.e., the Agresti-Coull estimator for p adds four trials

and two errors.

The holdout error rates in Table 11 are all higher
than the optimistically biased leave-one-out error rates

in Table 10, because the test data also contains heavily

distorted, broken or touching symbols, which are absent
in the training set. To examine the actual reasons for

the difference in more detail, we have also counted the

number of errors due to touching or broken symbols

and found that

– 46 percent of the neume recognition errors and

– 26 percent of the neume grouping errors

were due to broken or touching symbols. This is an ob-

servation also made in other OCR applications, where

a considerable part of the recognition errors is typically

due to segmentation errors [26]. A technique commonly

deployed in OCR is to post-correct the recognition re-
sults by looking for lexical or syntactic errors [32]. To

estimate whether such a post-correction could also be

useful for our recognition system, we have additionally
counted which of the errors lead to a syntactically im-

possible neume combination and found that this was

the case for

– almost all of the neume recognition errors and

– more than 90 percent of the neume grouping errors

Consequently, syntactical plausibility checks could au-
tomatically detect the major part of the recognition

errors. The downside of such a post-processing would

however be that certain notational rules had to be wired

into the system, making it applicable to only a narrow
range of neumatic notational conventions.

3.6 Output Encoding

Recognition of the neumatic music results in a machine

readable output code. Ideally, this would be represented

in the form of a well documented open file format, for
which commodity software is available, comparable to

MusicXML as a widely deployed interchange format for

common western music notation [27]. MusicXML does
not, however, provide any means by which to encode

neumatic notations and there is no other widely ac-

cepted file format for psaltic music notation.

A development project for an XML based music

encoding scheme particularly tailored to the needs of

scholarly critical editions is the Music Encoding Initia-
tive (MEI) [28]. While supporting common music nota-

tion out of the box, MEI also allows for the inclusion of

user defined modules as extensions. Such a module has
recently been developed by the TüBingen project to en-

code late medieval diastematic neumes [29]. Both this

module and the MEI specification are currently under
development and still a moving target.

A different file format specification is currently de-

veloped by the NEUMES Project [4] as a universal XML
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encoding scheme for medieval chant notation. It aims

at covering a wide range of neumatic notations and also
addresses the uncertainty problem of yet poorly under-

stood notation. This introduces more complexity than

necessary for our very limited scope of contemporary
psaltic notation. Like the MEI neumes extensions, the

NeumesXML specification is still under active develop-

ment and thus subject to changes.

A different option is to use the file format of a graph-
ical Psaltiki editor like Melodos [30]. Apart from the

problem that this format is undocumented, this would

also mean that the output would be useless without this
particular software or on platforms for which this soft-

ware is not available. This would be particularly inap-

propriate for storing the results in a database, because
no custom third party software (e.g. for further musical

analysis) could be written.

Yet another way of entering and publishing psaltic

music is the use of an ordinary word processing pro-
gram in combination with some special font. Ideally,

the font encoding from the Unicode Standard [2] could

be used, which specifies code numbers for the individual
neumes, but does not cover their relative positions. Un-

fortunately, word processing programs are inappropri-

ate for the two-dimensional CPN, because they are only

designed for lines of characters in a one dimensional se-
quence. Hence two different crutches using custom fonts

are in use:

– encoding neume groups using pre-combined neumes

rather than individual neumes as characters

– using different characters for the same neume at dif-
ferent offsets

Generating such an output would also mean to opt for

some special non standard font encoding, thereby lim-

iting the usability of the output considerably.

An interesting compromise between GUI systems
and heavily-tagged XML input is currently developed

by Haralambous in the Byzantine notation typesetting

system QAMURIS based on luaTEX2. He uses the Uni-

code characters from [2] combined with ASCII charac-
ters (/, -, <, >) to represent a vertical relation, absence

of base character, and offset of diacritic. This system is

still under development and not yet ready for produc-
tion use.

We therefore decided to create our own CPN code,

which is both simple (so that converters to different

formats can be written without much effort) and does
not loose any layout information of the music print.

2 Yannis Haralambous: QAMURIS, A Byzantine Musical No-
tation Typesetting System based on OTPs, luaTEX callbacks and
OpenType fonts. TUGboat - The communications of the TEX
Users group (in preparation)

Neume

Group

Output Code

(primary.oligon[0,0];kendimata[-3,2];

gorgon.mono-gorgon[-5,3])

(primary.oligon[0,0];

linking.heteron[-5,-3];apostrophos[-6,2];

kendimata[-2,2];gorgon.mono-gorgon[-4,4])

(martyria.diatonic-hemi-phi[0,-6];

letter.small.pa[0,0])

Table 12 Examples of the output code for single neume groups.

The output is a simple ASCII text file where each line

of text represents a line of neume groups in the input
image and groups are enclosed in parentheses. The pri-

mary neume (or the main martyria or chronos neume)

in each group is marked by an appropriate prefix and
to each neume its coordinates are attached in square

brackets ([x,y]). These coordinates are measured in

the following coordinate system:

– y = 0 on the baseline, x = 0 at the right edge of the

primary neume bounding box
– the grid unit size is oligon height

– the given coordinate is the position of the lower right

edge of the neume bounding box, except for Gor-
gons, where the leftmost lower edge is used. Note

that this results in mostly negative x-coordinates.

Table 12 shows some examples for the encoding of

individual neume groups in our code.

4 Summary

Our recognition system covers the complete process
from reading a raster image of CPN notation to gener-

ating a machine readable code. This includes the mea-

surement of characteristic page dimensions, page and

symbol segmentation, neume recognition and syntacti-
cal neume grouping.

Two characteristic dimensions (oligon width and

oligon height) are measured on a filtered image in which
narrow connected components (width/height < 3) have

been removed. Our experiments show that width and

vertical stroke height of the frequent neume Oligon can
be determined with good accuracy from the histogram

of CC widths and black vertical runlengths, respec-

tively. Neume baselines are determined from maxima

in the horizontal projection profile of the same filtered
image.

An important page segmentation step is the separa-

tion of chant text (“lyrics”) from neumes. The technical



15

problem of this step lies in the fact that certain neume

groups (mostly martyrias) extend into the lyrics zone
and that they can contain ordinary Greek letters that

also appear in the chant text. Our system does this in

two stages: first it determines text lines from the hor-
izontal projection profile of the full (unfiltered) image,

while utilizing the previously found baseline positions.

Then it removes all CCs around the text lines, unless
they “seem to belong to a martyria”. For the latter cri-

terion, we have devised two different approaches, one

purely rule based and one primarily based on trained

recognition. Our experiments revealed that both of our
approaches have their shortcomings, with the rule based

approach being slightly better, though not significantly.

The individual symbols are separated with con-
nected component labeling and their recognition is done

with a nearest neighbour classifier. Our experiments

on a variety of printed sources have shown that for
these sources even simpler features than those proposed

by Gezerlis [6] yield good recognition rates. While the

leave-one-out performance of the chosen feature set was

greater than 99% on all training sets, the final recogni-
tion rates for the individual neumes on the test images

were lower (between 95% and 98.5%, depending on the

source). A considerable fraction of these errors was due
to touching or broken characters.

The final neume layout analysis step builds neume

groups based on horizontal overlaps. Additionally, our
system uses a class naming convention by which not

only classes can be specified during training, but also

possible grammatical neume functions. This approach

worked quite well and lead to grouping error rates be-
tween one and three percent, depending on the source.

5 Conclusions and Perspectives

We have developed a prototype of the described system

that is freely available [9] and works well on printed

books. To further improve its recognition quality, we

suggest three starting points: the automatic lyrics re-
moval, the symbol segmentation, and a syntactic post-

correction.

Even though the reported error rates for lyrics re-
moval might seem low at first sight, they can require

tedious manual correction of the final recognition re-

sults. Hence we plan to add a graphical user interface
for manually correcting the automatic lyrics removal as

an optional interactive step between the page segmen-

tation and recognition stages. Independent from this

workaround, the lyrics removal leaves room for further
improvement by trying to adapt general page layout

analysis methods for complicated layouts, like the use

of area Voronoi diagrams [31].

As a considerable fraction of the neume recognition

errors was due to touching characters, these can hardly
be diminished by further optimising the feature set. Ac-

tually the chosen feature set already has a leave-one-out

performance of over 99%. It thus seems more promising
to have a look at classification based strategies for char-

acter segmentation [26], rather than trying to further

optimise the feature set.

Another means to improve the final recognition rate
could be a lexical or syntactic post-correction, a tech-

nique commonly used for improving OCR results [32].

As in our tests most errors made by our system lead to
syntactically impossible neume combinations, many of

the recognition errors could be automatically detected

with the aid of a program for generating CPN notation
that utilises the notational conventions of CPN which

can be considered as some kind of diagram notation

[33]. The recently published third party program Melo-

dos [30] actually offers an automatic correction mod-
ule, which could provide a useful option to improve the

recognition rates of our system.

An interesting area of further research could be the
reformulation of the neume grouping as a constraint

satisfaction problem [34]. The grouping can be consid-

ered as a labeling of the neumes under constraints im-

posed by the notational conventions. This would pro-
vide a general framework both to formulating syntac-

tically impossible combinations and for their detection

already during the neume layout analysis step.

Our recognition system is not limited to the partic-
ular neumes of CPN listed in Table 2. Because of its

training abstraction layer, it can be adapted to other

variants of psaltic chant notation, including notations
in Rumanian and Slavonic as well as paleographic nota-

tions. With such an extension into the domain of hand-

written manuscripts, we are to expect that some of our
algorithms will require modifications due to a higher

variance both in the shape of the neumes and in their

positioning.

As a first step in the direction of psaltic chant
manuscript recognition, we plan to investigate the

manuscripts by Angelos L. Boudouris, who was the dis-

ciple and First Domestichos of Iakovos Nafpliotis at the
Patriarchate of Constantinople during the turn of the

20th century. These manuscripts, approximately 10,000

pages distributed in 18 volumes, use the same CPN as

the prints discussed in the present paper.

We hope that our research will eventually help

building a machine readable repository of this reper-

toire that can be used for further musicological research.
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Weigel: Techniques for improving OCR results. In H.
Bunke, P.S.P. Wang (editors): “Handbook of Character

Recognition and Document Image Analysis.” World

Scientific, pp. 227-258 (1997)

33. D. Blostein, L. Haken: Using Diagram Generation Software
to Improve Diagram Recognition. IEEE Transactions on
Pattern Analysis and Machin Intelligence 21, pp. 1121-1136

(1999)

34. E.P.K. Tsang: Foundations of Constraint Satisfaction.
Academic Press, London and San Diego (1993)


