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Abstract

Kd-trees allow for efficient nearest neighbor searches and can therefore be useful for

layout analysis problems in document image analysis. Two alternative customiza-

tions of the k nearest neighbor search in kd-trees are presented, such that it re-

turns only within line or between line neighbors. One customization is based on

a modified distance metric, which does not entirely suppress unwanted neighbors,

but makes them less likely to be returned. The other customization is based on a

search predicate. Both customizations have been implemented in the Gamera frame-

work for document analysis and recognition. In experiments performed on the UW

dataset, the probability for an unwanted neighbor with the modified distance metric

turned out to be low, while the runtime of the search was considerably less than that

of the search with a predicate.

1 Introduction

Many algorithms for document layout analysis are of a “bottom-up” type: they

start from connected components (CCs) and subsequently build therefrom larger

units. The first step in these algorithms usually consists in building clusters of

neighbors among the connected components. Prominent examples are the deter-

mination of the skew angle from the histogram of angles between neighboring

CCs [1] [2], text line detection by finding paths in the neighborship graph [3],

or O’Gorman’s “docstrum” [4].

A naive implementation for finding all nearest neighbor pairs from a set of n two

dimensional points takes O(n2) time. O’Gorman suggested to sort the points in

one of the two dimensions [4], which happens to be an algorithm proposed about

20 years earlier by Friedman et al. [5], who have shown that this algorithm has

O(n3/2) runtime complexity on average. Its worst case runtime is still O(n2).
To further reduce the runtime, two common geometric data structures can be

used: Voronoi diagrams or kd-trees.

∗Published in C. Dalitz (Ed.): “Document Image Analysis with the Gamera Framework.” Schriftenreihe des

Fachbereichs Elektrotechnik und Informatik, Hochschule Niederrhein, vol. 8, pp. 39-52, Shaker Verlag (2009)
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Figure 1: Example for a Voronoi diagram in

which the second nearest neighbors is not in

one of the neighboring cells.

In a Voronoi diagram, each of the points creates a cell, in which every element

of that cell is closer to the cell defining point than to any other point. Thus, a

Voronoi diagram is not actually a neighborship graph based on distance, but on

adjacency [6], see Fig. 1. If only the nearest neighbor is searched, this must also

be one of the adjacent neighbors, and, consequently, the Voronoi diagram can

also be used to find the nearest neighbor.

Even though a Voronoi diagram can be built in O(n log n) time [7], the worst

case run time for a single nearest neighbor search in a Voronoi diagram is still

O(n)1. When adjacency, however, is more important than distance, the Voronoi

diagram can be a powerful tool for document layout analysis, especially when

each CC is not only represented by a single point, but its shape is taken into

account by using a generalization of the Voronoi diagram, the area Voronoi

diagram [8] [9].

When the layout analysis algorithm requires not adjacent neighbors, but the ac-

tual k nearest neighbors of a CC (like O’Gorman’s “docstrum” [4]), a kd-tree is

the appropriate data structure for searching. A kd-tree can be built in O(n log n)
time and a single k nearest neighbor search can be done in O(log n) expected

time, resulting in O(n log n) time for finding all k nearest neighbor sets. Kd-

trees were originally introduced by Bentley [10]; a modern text book introduc-

tion can be found in [7]. Neither of these references covers nearest neighbor

searches in kd-trees; these are described in [11].

It should be noted that the worst case runtime for a nearest neighbor search in

a kd-tree is still O(n). Consider, e.g., the case of all points arranged on a circle

and seeking the nearest neighbor to the circle center. Recently, more sophisti-

cated data structures have been proposed that even have a guaranteed runtime

of O(log n) [12]. Typical document layout analysis problems however not re-

quire a single nearest neighbor query, but, rather, several queries, a problem also

1The worst case occurs when the cell of the test point shares edges with all other points.
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known as the all-k-nearest-neighbor problem. This has the effect that patholog-

ical situations cannot dominate the worst case search runtime, and it is indeed

possible to obtain worst case O(n log n) runtime for this problem with kd-trees

[13].

For document layout analysis, not only the distance between CCs is of inter-

est, but also their relative position. In skew angle estimation for instance, only

neighbor pairs within the same text line are of interest. As the distance between

neighboring CCs within a line is generally smaller than the distance between

lines, the nearest neighbor pairs will be dominated by within-line pairs. When

between-line pairs are needed, a plain nearest neighbor search is insufficient. A

workaround could be to to select k nearest nearest neighbors for each CC, in

the hope that among them there might also be some from a different text line.

O’Gorman, for instance, used k = 5 [4]. It would be however more satisfying

to have an option to directly search for within-line or between-line neighbors.

In this paper, two customizations of the nearest neighbor search are presented

that are especially tailored to this problem. One is the obvious approach to al-

low for an optional search predicate. This ensures strictly that only neighbors

fulfilling some condition are returned, but it has the disadvantage of possibly

increasing the runtime complexity. The other customization consists in modi-

fying the distance metric in such a way that neighbors of a specific type are

returned more often. When this is acceptable, this approach has the advantage

of maintaining the runtime complexity of kd-trees.

This paper is organized as follows: section 2 gives an introduction to kd-trees

and section 3 describes a straightforward C++ implementation of a kd-tree that

the author recently has added to the Gamera framework for document anal-

ysis2. Section 4 describes search modifications for within- and between-line

searching, and an interface for their implementation based on C++ function ob-

jects. Section 5 presents the results of an experiment, in which the two search

modifications were compared to each other on the UW-I image dataset of the

University of Washington.

2 Kd-Tree Basics

A kd-tree is a binary tree whose nodes represent points {xi}
n
i=1

in R
d. Each

node has assigned a cutting dimension cutdim, such that all points in a left

2Freely available from http://gamera.informatik.hsnr.de/
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Figure 2: Example of a kd-

tree built from seven points

in R
2. The dashed lines

show how the plane is cut

by the node along cutdim.

subtree have a smaller coordinate value in this dimension than the parent point

and vice versa for the right subtree (see Fig. 2). This has the effect that all nodes

in a subtree are bound to a specific region in R
d, which can be utilized to speed

up k nearest neighbor searches because regions farer away than the k-th nearest

neighbor found so far need not be searched. In a detailed analysis, Friedman

et al. have shown that the expected runtime for a k nearest neighbor search is

O(log n), provided the tree is balanced [11].

While a balanced kd-tree can be built in O(n log n) time, keeping a kd-tree

balanced on insertions and deletions can be expensive. Therefore, kd-trees are

usually used as static data structures. This is no restriction for layout analysis

problems, because the location of the CCs is fixed and on these fixed data many

queries are to be done. Friedman et al. give algorithms both for building a bal-

anced kd-tree and for a k-nearest neighbor search [11]. Their k nearest neighbor

search algorithm assumes that the distance measure is of the form

d(x,y) = F

(

d
∑

i=1

fi(xi, yi)

)

(1)

where F is monotonous, and all fi are monotonous in both arguments and sym-

metric. Typical examples for distance measures fulfilling (1) are the Minkowski

distances of order p

d(x,y) =

(

d
∑

i=1

|xi − yi|
p

)1/p

(2)

The search algorithm uses two utility functions to determine whether a search

is finished or whether a subtree can contain nearest neighbor candidates:

• ball within bounds tests whether the circle around the search point with

the radius of the current k-th farest nearest neighbor lies entirely in the

subtree; if this is the case the search is finished.
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distance(p,q : CoordPoint)
: double

coord_distance(x,y : double,
dim : int) : double

DistanceMeasure

index_b : int) : kdtree_node*
− build_tree(depth : int, index_a : int, 

− bounds_overlap_ball(point : CoordPoint,
dist : double, node : kdtree_node*)

− ball_within_bounds(point : CoordPoint,
dist : double, node : kdtree_node*)

− neighbor_search(point : CoordPoint,
node : kdtree_node*, k : int)

k : int, result : vector<KdNode>*)
+ k_nearest_neighbors(point : CoordPoint,

allnodes : vector<KdNode>

root : kdtree_node*

dimension: int

KdTree

+ KdTree(nodes : vector<KdNodes>)

distance : DistanceMeasure*

kdtree_node

point : CoordPoint

cutdim : int

hison, loson : kdtree_node*

hibound, lobound: CoordPoint

dataindex : int

1..*

point : CoordPoint

data : void*

KdNode

Figure 3: Class diagram of the classes involved in the kd-tree implementation. CoordPoint is

a typedef for vector<double>. The private functions of KdTree are the functions given in the

appendix of reference [11].

• bounds overlap ball tests whether the circle mentioned above overlaps

with a subtree region; if this is not the case, the subtree needs not to be

searched.

In the original algorithm by Friedman et al., the bounds for the subtree regions

were computed on the fly during the search. When many queries are done on

the same tree, it is however more efficient to store the bounds with each node

while building the tree.

3 Kd-Tree Implementation

In this section, a kd-tree implementation is described that the author has written

for the Gamera framework for document analysis and recognition [14]. As the

source code of this implementation is freely available3, I give here only the main

ideas. An overview over the classes involved can be seen in Fig. 3.

When applying kd-trees to document layout analysis problems, we must distin-

3See the files include/kdtree.hpp and src/kdtree/kdtree.cpp in the Gamera source code distribution.

43



Kd-Trees for Layout Analysis Dalitz

from gamera.kdtree import *

ccs = image.cc_analysis()

nodes = [KdNode([cc.center.x,cc.center.y], cc) for cc in ccs]

tree = KdTree(nodes)

nn_pairs = []

for cc in ccs:

knn = tree.k_nearest_neighbors([cc.center.x,cc.center.y], 2)

nn_pairs.append([cc, knn[1].data])

Listing 1: Python code for finding all nearest neighbor pairs among the connected components

of an image.

guish between the internal and external representation of a node. The external

representation is the class KdNode, which is a node from the user’s point of

view. Beside the point in R
d, it can store an arbitrary object (in typical use cases

a connected component) in its property data. A vector of KdNode’s must be

passed to the kd-tree constructor.

The internal representation is the class kdtree node, which is only needed within

the kd-tree data structure. Beside the point location, the cut dimension, pointers

to its sons, and the bounds of its subtree’s region, it also stores the index of the

corresponding KdNode from KdTree.allnodes in its property dataindex.

To allow for flexible distance measures, the KdTree class does not use a fixed

function for computing the distance between two points, but stores a pointer dis-

tance to a class DistanceMeasure. This is a class that implements the functions

d(x,y) and fi(xi, yi) from Eq. (1) as member functions distance() and coor-

dinate distance(). Both member functions are defined to be virtual in the base

class DistanceMeasure so that custom metrics can be implemented as derived

classes that are stored in KdTree.distance. As the building of the tree is indepen-

dent from the distance measure, the distance metric may be changed between

subsequent calls to KdTree.k nearest neighbors().

The kd-tree implementation in Gamera closely follows [11], with additional

utilization of the C++ Standard Template Library (STL) [15]: the optimal split

point for a balanced tree is found with the nth element algorithm, which finds

the median in linear time, and the current neighbor candidates in the k nearest

neighbor search are stored in a priority queue.

One of the strengths of the Gamera framework lies in its ease of use as a Python

library. Therefore the kd-tree implementation has also been made available on
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Figure 4: The bounding boxes of neighbors within the same line have overlapping y dimensions

(shaded region in left figure). This criterion can be computed from the bounding box properties

shown in the right figure.

the Python side with only the the classes KdNode and KdTree made public. An

example for the use of the kd-tree API can be seen in listing 1.

4 Within-Line and Between-Line Neighbors

Under the assumption that text lines are not too strongly skewed, we can define

two neighboring components a and b to belong to the same text line when the

following property holds (see Fig. 4):

[a.ury, a.lry] ∩ [b.ury, b.lry] 6= ∅ (3)

where ury and lry stand for the y-component of the upper right and lower right

corner of the bounding box, respectively, and the square brackets denote closed

intervals. Let us call neighbors fulfilling (3) within-line neighbors, and neigh-

bors not fulfilling this condition between-line neighbors.

To use a kd-tree for finding only one specific type of neighbors, the Gamera

kd-tree API adds an optional search predicate to the arguments of the method

KdTree.k nearest neighbors (see Fig. 3). For passing the search predicate, a

function object (also known as callable class or functor [15]) is the appropriate

programming construct. In the C++ API, the search predicate must be derived

from KdNodePredicate, while it can be any callable class in the Python API.

The call of the class may only take a single argument, the KdNode, and returns

true when this node is an admissible search result. If this criterion depends on

some information from the actual search point (like the bounding box dimen-

sion [ury, lry] in (3)), this information can be passed to the class constructor and

stored within the class. Listing 2 gives an example both for Python and C++.
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# defining a search predicate in Python

#--------------------------------------

# predicate definition as callable class

class predicate(object):

def __init__(self, cc):

self.top = cc.ur.y

self.bot = cc.lr.y

def __call__(self, node):

cc = node.data

if (self.top >= cc.ur_y and self.top <= cc.lr_y) \

or (cc.ur_y >= self.top and cc.ur_y <= self.bot):

# find three nearest neighbors of a CC fulfilling predicate

knn = tree.k_nearest_neighbors([cc.center.x, cc.center.y], \

3, predicate(cc))

// defining a search predicate in C++

//------------------------------------

// predicate definition as a functor

struct MyPredicate : public KdNodePredicate {

size_t top, bot;

MyPredicate(size_t t, size_tb) {

top = t; bot = b;

}

bool operator()(const KdNode& kn) const {

size_t cctop = kn.data->offset_y();

size_t ccbot = kn.data->offset_y() + kn.data->nrows();

return ((top >= cctop && top <= ccbot) ||

(cctop >= top && cctop <= bot));

};

};

// find three nearest neighbors of a CC fulfilling predicate

MyPredicate predicate(cc.offset_y(),cc.offset_y()+cc.nrows());

CoordPoint center(2);

center[0] = (double)(cc.offset_x() + cc.ncols()/2)

center[1] = (double)(cc.offset_y() + cc.nrows()/2)

tree.k_nearest_neighbors(center, 3, &neighbors, &predicate);

Listing 2: Defining condition (3) as a search predicate for the Gamera kd-tree API in Python

(top) or in C++ (bottom). In both cases, it is assumed that KdNode.data stores the CC associated

with the point.

An alternative way to obtain only a specific type of neighbors can be devised

from the observation that within-line neighbors typically have a much larger
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α = 10
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Figure 5: By modifying the factor α in the dis-

tance measure (4), different points become the nearest

neighbor (NN) of the test point. The dashed line shows

the Euclidean NN, while α ≪ 1 leads to a better verti-

cally aligned neighbor, and α ≫ 1 to a better horizon-

tally aligned neighbor (between-line neighbor). Here

p = 2 is used, which is the exponent used in the Eu-

clidean distance.

distance in the x-direction than in the y-direction:

|a.centery − b.centery| ≪ |a.centerx − b.centerx|

and vice versa for between-line neighbors. It is therefore possible to make

neighbors of one kind “closer” than neighbors of the other kind by giving dif-

ferent weights to the two directions in the distance metrics (2):

d(x,y) =

(

d
∑

i=1

wi|xi − yi|
p

)1/p

As we only have two dimensions, and only the relative values of distances are

of importance for nearest neighbor searches, we can express the two weights

(wx, wy) by a single number, their ratio α = wx/wy. Then the weighted distance

reads

d(a,b) =
(

α|ax − bx|
p + |ay − by|

p
)1/p

(4)

A value of α < 1 means that the y-distance has a higher penalty than the

x-distance. As shown in Fig. 5, we can then find within-line or between-line

neighbors for appropriate choices of α.

This method is not fool-proof, but depends on the choice for α. Moreover, even

decent choices for α can occasionally return neighbors of the wrong kind. This

leads us to two questions:

• What are good choices for the weight α and what is the error rate on real-

istic document images?

• Does the distance weighted approach have an edge in terms of runtime

performance?

Both questions will be answered in the following section.
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5 Experiments on the UW-I Image Dataset

To examine the questions raised in the preceding section, I have measured the

numbers of within-line neighbors obtained for weighted metrics on the UW En-

glish Document Image Database I, which was released by Haralick et al. in 1993

at the University of Washington [16]. This dataset contains both scans from

machine printed journal articles and synthetic images generated from LATEX

sources. From these, I have only used the real scans as provided in the UW-I

dataset as binarized images. As many images contained considerable noise like

speckles or copy margins, all images have been pre-processed with the follow-

ing filters:

• All CCs consisting of less than eight pixels were removed. This was neces-

sary to avoid that “pepper noise” from the binarization of halftone figures

spoilt the subsequent measurement of the character size.

• The median CC area (width × height) was measured as an estimator for the

character size marea, and all CCs with an area less than 0.25 ·marea (repre-

senting noise and diacritical signs4) and greater than 8 ·marea (representing

fragments from copy margins and figures) were removed.

• Some images only contained figures and almost no text. To filter these out,

only images with more than thousand CCs were examined.

The last criterion sorted out 47 from the 979 images in the UW-I dataset, which

left 913 images for the experiment. On each of these images, the following

numbers were measured for p = 2 (Euclidean metric) and different values of α,

ranging between 10−3 and 103:

• the percentage of within-line neighbors among all nearest neighbor pairs

with the α-weighted distance (4)

• how many of the α-weighted neighbors actually were the nearest neighbors

within the same line, and the same for between-line neighbors, respectively

• the runtime for finding all α-weighted nearest-neighbor pairs, compared to

the runtime of finding only within/between-line neighbors with a search

predicate

4The removal of small sized components is a typical step in CC based bottom up layout analysis like

O’Gorman’s “docstrum” [4]. Even though O’Gorman did not give an actual algorithm for small component re-

moval, he said that it “can be done by peak detection” from the CC size histogram [4].
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Figure 6: Percentage of within-line and between-line nearest neighbors for different values of

the weight α in Eq. (4) with p = 2.

49



Kd-Trees for Layout Analysis Dalitz

Fig. 6a shows clearly how small or large values of α suppress neighbors of a

specific type, in accordance with the conjecture from section 4. The turnover

point occurs for α ≈ 7, which is greater than one because, for text documents,

within-line neighbors tend to be closer than between-line neighbors.

One might draw the conclusion from Fig. 6a that setting α as low as possible is

the best for searching within-line nearest neighbors, and vice versa for between-

line neighbors. This does however not hold, because the returned α-weighted

neighbor needs not to be the actual nearest neighbor under the predicate (3).

An example can be seen in Fig. 5: setting α = 0.1 favors the neighbor on the

left of the test point because it is better vertically aligned than the actual nearest

neighbor within the same line (dashed line).

Therefore, I have also measured how many of the α-weighted neighbors actu-

ally match the nearest or second nearest neighbor under the within/between-line

search predicate. Fig. 6a shows that these numbers decrease when α becomes

too small or too large, and that there is an optimum at about α ∈ (0.1, 1) for

within-line neighbors and about α ∈ (20, 90) for between-line neighbors. This

behavior was universal for all documents, except for only 11 images, all of

which were either in landscape format, or contained a large number of ran-

domly arranged CCs stemming from figures or halftone images. Hence, it can

be concluded that for finding within-line neighbors in text documents, α ≈ 0.5
is a good choice, and α ≈ 50 for finding between-line neighbors.

Concerning the runtime, the neighbor search with predicate (3) or its com-

plement was on average about seven times slower than the distance weighted

nearest neighbor search. This may be however not necessarily due to a higher

runtime complexity, but because the test of the predicate requires calling a sepa-

rate function on the Python side and by querying CC information. The distance

weighting in contrast adds no overhead and does not need to access any external

information stored in the connected component data structure. It is likely that

the runtime difference can be made smaller when special purpose data struc-

tures for storing CC bounding box information are added directly to the kd-tree

data structure. Nevertheless, this shows that, in the general implementation of

kd-trees in the Gamera framework, a search predicate based on CC dimensions

adds considerable runtime overhead compared to a weighted distance approach.

50



Kd-Trees for Layout Analysis Dalitz

6 Conclusion

The Gamera kd-tree library provides a versatile and easy to use tool for k near-

est neighbor searches. The optional search predicate makes it applicable for

searching special kind of neighbors, like those within or between lines.

When no strict search predicate is required, like in statistical measurements of

rotation angle or page orientation, a weighted distance nearest neighbor search

is a faster method for obtaining mostly within- or between-line neighbors. For

within-line neighbor searches, the distance weight ratio α = wx/wy between the

x-weight wx and the y-weight wy should be set to α ≈ 0.5, and for between-line

searches to α ≈ 50 in an Euclidean metric.

Both a conditional nearest neighbor search and a weighted distance nearest

neighbor search are made very easy with the Gamera kd-tree API. Hopefully,

this paper will help practitioners in the field of document image analysis to

make effective use of this new kd-tree library.
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