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Abstract

This survey summarizes proposals made in the pattern recognition literature for de-

tecting uncertain patterns that should rather be rejected than classified by a classi-

fier. Beyond reviewing methods applicable to distance based nearest neighbor clas-

sifiers, this article describes an interface for computing confidences, storing them

with classified images and querying this information, as it is implemented in the

Gamera framework for document analysis and recognition. Based on this interface,

a method for detecting broken, touching, and unknown characters, as well as noise,

is proposed. The method is applied to two historic prints, showing that this method

works well for detecting broken and touching characters, but less reliable for identi-

fying glyphs representing noise.

1 Introduction

The classical problem of statistical pattern recognition is to assign an unknown

pattern to one of M different classes {ω1, . . . , ωM}. There are a number of text-

books entirely devoted to this problem, for instance [Webb2002]. Basically, it

boils down to picking the class with the highest posterior probability P (ωi|x),
which denotes the probability that the pattern is of class ωi when the feature

vector x is observed. When all probabilities are known, this leads to Bayes’

decision rule. When the probabilities are unknown, the decision must be based

on training samples from known classes. A simple and often deployed decision

rule is the k nearest neighbor (kNN) rule: decide for the class that is most fre-

quent among the k nearest neighbors of the unknown pattern in feature space

(see Fig. 1).

∗Published in C. Dalitz (Ed.): “Document Image Analysis with the Gamera Framework.” Schriftenreihe des

Fachbereichs Elektrotechnik und Informatik, Hochschule Niederrhein, vol. 8, pp. 16-38, Shaker Verlag (2009)
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Figure 1: An example for the kNN rule for a

two dimensional feature space and k = 3. The

black test point is assigned to class A, because

among its k nearest neighbors the majority is of

class A.

In practice however, the assumption that all classes are known beforehand does

not always hold. One case is the situation of a large number of classes (e.g.

Chinese characters), of which some are rather rare. In such cases, training sets

stemming from realistic data will generally be incomplete. Another typical case

is the presence of missegmented samples, which can represent arbitrary frag-

ments or combinations of proper class patterns. It is therefore desirable to have

a reject option, i.e. an option to withhold a classifier decision.

It should be noted that a reject option cannot simply be integrated into the stan-

dard model merely by adding class M + 1 as class “unknown”, because the

distribution of class “unknown” is also unknown and cannot be estimated from

training data. Therefore the decision criteria for class “unknown” will be fun-

damentally different from the decision rule for all other classes. A natural ap-

proach is to extend the classifier to not only make a class decision, but to also

provide some kind of confidence measure for the decision. This confidence can

then be used in a second step to decide for acceptance or rejection.

Such a two step approach is particularly useful for modular recognition systems

like the Gamera framework for document analysis and recognition [Gamera].

As this approach separates the classification and rejection steps, it allows for

flexibility in the part of the system that receives the results from the classifier.

Actually, the kNN classifier currently implemented in Gamera already returns

a primitive “confidence” value (see section 3 for details), which is utilized by

Gamera’s optional grouping algorithm to pick the best match from a set of frag-

ment combination hypotheses [Droettboom2003]. It is one of the aims of the

present paper to make suggestions for confidence measures and rejection rules

suitable for modular recognition frameworks like Gamera.

This paper is organized as follows: section 2 introduces general concepts and a

taxonomy of approaches. In section 3, proposals for establishing a “confidence

measure” for classification decisions are reviewed. Sections 4 and 5 cover de-

cision rules for rejection. Section 6 describes the confidence measure interface
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implemented in Gamera, and section 7 presents a case study how this interface

can be deployed to detect broken or touching characters, as well as noise.

2 General Concepts

A first step in in the direction of adding alternatives to classification was made

by Chow, who introduced a reject option within the context of Bayesian deci-

sion theory [Chow1970]. Chow still assumed that all classes and probabilities

are known beforehand, and his motivation was to avoid classifications with a

high probability of error. Because feature space regions with a low probability

P (ωi|x) contribute most to the error rate, Chow suggested to choose a threshold

t and then reject a pattern when

P (ωi|x) < 1− t for all classes ω1, . . . , ωM (1)

Even though this rule reduces the error rate e, which becomes a function of the

threshold t, it introduces a rejection rate r(t). According to Chow, the above

rejection rule is “optimal” in the way that for a given error rate, it minimizes the

rejection rate. When the posterior probability is estimated from training data,

Fumera et al. observed that the “optimality” of Chow’s rule does not necessarily

hold and showed that a class dependent threshold can improve the error-reject

tradeoff [Fumera2000].

Chow made the assumption that all classes and their respective a priori and

class conditional probabilities are known. In this situation, the only reason for

rejection is ambiguity in the class decision. In the case of incomplete knowledge

about all possible classes however, another possibility beside class ambiguity

exists: that the pattern belongs to neither class.

Dubuisson and Masson therefore called Chow’s rejection an ambiguity reject

and introduced a new type of rejection, the distance reject [Debuisson1993].

“Distance” alludes to the decision criterion that a pattern is so far away from the

training patterns in feature space that it is unlikely to be of any of the training

classes. A “distance reject” can also be considered as the detection of a novel

class. Markou and Singh therefore called it novelty detection and devoted a

review to this topic [Markou2003].

Both for ambiguity and distance reject, the reject criterion is generally based on

some kind of confidence measure. In Chow’s rule (1), the confidence measure

is simply the posterior probability of the most probable class ωi. As this is not
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known in practical situations, it must be replaced by an estimator thereof or

by some other measure. Actually, the confidence measures for ambiguity and

distance reject need not be the same, and can even be used in different ways. Let

us therefore first review suggested confidence measures in a separate section,

and then consider the two reject cases.

3 Classifier Confidence

The most obvious attempt to measure classification confidence is the use of

an estimator for the posterior probability P (ωi|x). In order to apply Chow’s

rejection rule (1), it is actually not necessary to estimate the posterior probabil-

ity directly, but it is sufficient to find an estimator for any monotonic mapping

thereof. If such a mapping g exists for a confidence measure fi for class ωi, i.e.

fi(x) = g(P (ωi|x)) (2)

Lin et al. called fi a generalized confidence for class ωi [Lin1998]. In the case

of the kNN rule, a direct estimator for the posterior probability is given by

[Cover1967]

P̂ (ωi|x) = ki/k (3)

where ki is the number of training samples from class ωi among the k nearest

neighbors. This estimator is only applicable in the large sample limit k,N → ∞
(where N is the number of training samples), for which Cover and Hart have

proved the (probabilistic) convergence of the estimator to the true probability

[Cover1967]. They have also shown that in this limiting case, the distance of a

test point to its nearest neighbor approaches zero with probability one. This is

mirrored in the fact that the actual distances to the nearest neighbors play no

role in the estimator (3).

For finite sample sizes however, all neighbors have different and finite distances

from the test point and it is natural to utilize this distance information in the

confidence computation. Atiya proposed not to use the actual distance values in

the confidence estimation, but to weigh the neighbor classes according to their

neighborship rank, i.e. the nearest neighbor gets more weight than the second

and so on [Atiya2005]. He replaced the kNN posterior probability estimator (3)

with

P̂ (ωi|x) =
k
∑

j=i

vj · δ(j, ωi) (4)
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Figure 2: When the individual fragments of the marked

broken symbol are classified, the estimator for the pos-

terior probability might not be an appropriate confidence

measure, because all class probabilities add to one, which

ignores alternative segmentations.1

with δ(j, ωi) =

{

1 when ωi = class of j-th neighbor

0 otherwise

where v1 ≥ v2 ≥ . . . ≥ vk are weights for the neighbor ranks, which are to be

determined by a maximum-likelihood method from the training data under the

constraint
∑

vi = 1.

Building a reject option on an estimator for P (ωi|x) like (3) or (4) makes

the implicit assumption that all possible classes are known beforehand and

that the training data contains samples of all classes, because of the constraint
∑M

i=1
P (ωi|x) = 1. This is insofar dissatisfying as it does not leave room for

unknown classes as in the example in Fig. 2. An indicator of an unknown class

could be that the distance to the nearest training sample is unusually large. It can

therefore be reasonable to build a confidence measure directly on the distances

rather than on an estimator for the posterior density.

Debuisson and Masson considered the average distance of the test point x to

the k nearest neighbors yi, . . . , yj as a confidence measure [Debuisson1993].

Unlike a probability estimator, this has however the drawback that it is not nor-

malized to a meaningful range, and even when all neighbors are of the same

class and one of the distances is zero, the confidence is not at the boundary of its

range. Therefore, other confidence measures normalized to the range [0, 1] have

been suggested, with the boundary value one meaning an almost sure decision.

Droettboom does not give the confidence measure used in [Droettboom2003],

but an inspection of his published Gamera source code shows that he used as a

confidence for class ωi

fi(x) =

(

1−
min{d(x, yj) | j = 1, . . . k and yj belongs to ωi}

max{d(x, yj) | j = 1, . . . , n}

)10

(5)

where the minimum in the numerator goes over the k nearest neighbors only,

while the maximum in the denominator goes over all training samples. This

confidence measure is normalized to 0 ≤ fi ≤ 1 with the desirable property that

it is one when x coincides with one of the training points yj. The division by the

1The image is a detail from the Greek chant book “Anastasimatarion” from 1847. For more information on the

source and the notation see [Dalitz2008].
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maximum distance over all training samples makes it however dependant from

the global spread of the training data in feature space and not only from the local

distances of the test point to its neighbors. On the other hand, this confidence

measure is even applicable for k = 1, and also works in the presence of rare

classes, of which only single items occur in the training data.

Arlandis et al. used the following confidence measure, which is built on the

distances to the k nearest neighbors alone [Arlandis2002]:

fi(x) =





∑

yjof class ωi

1

d(x, yj)





/(

k
∑

j=1

1

d(x, yj)

)

(6)

This confidence measure can be considered as a distance weighted version of

eq. (3). Actually it already appeared in Dudani’s paper on distance weighted

decision rules [Dudani1976] [Zavrel1997]. Dudani proposed it beside other dis-

tance weighting methods as a replacement for the kNN decision rule. The gen-

eral form of a distance weighted confidence is

fi(x) =





∑

yjof class ωi

vj





/(

k
∑

j=1

vj

)

(7)

where vj is a weight assigned to the distance d(x, yj). In addition to the inverse

distance weighting (3), Dudani also proposed linear distance weighting by a

linear interpolation between the nearest neighbor y1 and the farest yk among the

k nearest neighbors:

vj =
d(x, yk)− d(x, yj)

d(x, yk)− d(x, y1)
(8)

Even though Dudani only proposed it as a confidence measure for deciding

class membership, (7) can also be used in a reject criterion. Both (6) and (8) are

normalized to 0 ≤ fi ≤ 1 and are equal to one when all k neighbors are of the

same class. Moreover, (6) has the attractive property that it is one when the test

point is identical to a training sample, because limx→yj fi(x) = 1. It should be

noted however that neither confidence measure is meaningful for k = 1.

Roy and Madhvanath proposed to make the number k of neighbors considered

in the confidence measure (6) dependent on the class ωi, such that it is chosen

higher for classes more frequent in the training set [Roy2008]. It should be noted

however that this suggestion is in contradiction to Davies’ observation that the

class frequencies in the training set implicitly take care of the a priori class
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Figure 3: In this example, the nearest neighbor

(NN) of the black test point is of class A. the

nearest neighbor among the remaining classes is

of class C and is called the nearest unlike neigh-

bor (NUN).

probabilities [Davies1988]. Roy and Madhvanath’s suggestion may therefore

do good or harm, depending on how much the class frequencies in the training

set are skewed compared to the a priori probabilities.

A different approach, which is independent of the chosen value for k, is

Dasarathy’s concept of the nearest unlike neighbor [Dasarathy1995], which is

the nearest neighbor among the training samples not belonging to the closest

class (see Fig. 3). Let us denote the distance of the test point x to the closest

training sample from class ωi with di(x), that is

di(x) = min{d(x, yj) | j = 1, . . . N and yj belongs to ωi}

Then Dasarathy’s confidence measure reads

fi(x) = 1−
di(x)

minj 6=i(dj(x))
(9)

Lin et al. argued in [Lin1998] that (9) is an estimator for a generalized confi-

dence, but their argumentation made the implicit assumption that the expecta-

tion value E has the property E(X/Y ) = E(X)/E(Y ). This identity does not

hold in general, and it seems dubious that it holds in the special case X = di(x)
and Y = mink 6=i dk(x). Even though if might not be justifiable as a generalized

confidence, the confidence measure (9) is nevertheless appealing, because it is

one when x is a training sample and zero when the two nearest classes are evenly

apart. Moreover, it is meaningful even for k = 1. For k > 1, it does however not

take the class counts into account and is thus very susceptible to outliers in the

training data. A generalization of the confidence measure (9) is the proposal by

Chen and Ding to use the n-th nearest class rather than the second nearest class

in the denominator to take care of the situation that the recognition problem has

several very similar classes [Chen2003].

As a confidence measure that is also only based on the local neighborhood of

the test point x, but does not take the class information into account, Tax and
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Duin proposed [Tax1998]

fi(x) =
d(x,N(x))

d(N(x), N(N(x)))
(10)

where N(x) denotes the nearest training point to x. Their reasoning for this

measure was that the distance of an outlier to the closest training sample should

be larger than the distance among adjacent training samples. In their experi-

ments described in [Tax1998] however, this measure did not work for outlier

detection. In the successive paper [Tax2000], they were able to detect outliers

with this measure on a particular data set, but only in the special case of very

few training samples per class.

Barbu et al. suggested to use as the denominator in (10) not the distance to the

nearest, but to the farthest training sample [Barbu2007]. Let yk denote the k-th

nearest neighbor to the test point x and FN(y) the training sample most far

away from the point y, then their confidence measure reads

fi(x) =
1

k

k
∑

i=1

d(x, xj)

d(xj, FN(xj))
(11)

Barbu et al. only considered the problem of detecting outliers from a single

class, but the definition (11) naturally makes sense for different classes, when

for each class only the training samples belonging to this class are considered.

(11) is smallest for points x near the mean value of the class distribution, so it

measures somehow, how far a point deviates from the distribution mean. There-

fore this measure can only be expected to be meaningful for unimodal distribu-

tions. In [Barbu2007], Barbu et al. do not present any theoretical or experimen-

tal properties of (11), so that further investigations are necessary to say anything

about the usefulness of this confidence measure.

4 Ambiguity Rejection

In the first paper introducing a reject option for kNN classifiers, Hellman pro-

posed to apply a threshold on the kNN probability estimator (3), but made no

suggestion how to find an appropriate threshold [Hellman1970]. As (3) is lim-

ited to the large sample case, it seems more reasonable to use one of the other

confidence measures (4), (7) or (9) instead, because they also take the actual dis-

tances into account. Whatever the used confidence measure may be, the problem

of finding an appropriate reject threshold always remains.
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Depending on the confidence measure and whether the reject or error rates

should be limited, different approaches are possible:

• When the confidence measure is an estimator for the posterior probability,

the threshold is a bound of the error rate and can thus directly be chosen.

• The threshold can experimentally be determined on the training data, such

that a cross-correlation or bootstrap estimator of either the error rate or the

reject rate is below a predefined value.

• A different criterion can be defined that is to be optimized by the threshold

on the training data.

The first point is easily understood from the fact that 1− P (ωi|x) is the proba-

bility of making an error when deciding for class ωi. Therefore, Chow’s rule (1)

guarantees that the error rate will be smaller than the threshold t. Even when the

confidence measure is not a direct estimator for P (ωi|x), but a generalized con-

fidence in the sense of (2), the mapping function g(y) can be estimated from the

training data by Lin et al.’s “adaptive confidence transform” [Lin1998]. Then

Chow’s rejection rule becomes maxi fi(x) < g(1− t).

An alternative to an upper bound for the error rate e(t) is an upper bound on the

reject rate r(t). Unlike for e(t), there is no simple relationship between t and

r(t), so that the appropriate threshold t leading to a given reject rate r(t) must

be estimated form the training data. Chen and Ding proposed to experimentally

find the lowest value for t on a second independent training set such that r(t) is

still below the predefined value [Chen2003]. In the absence of an abundance of

training data, the same could be done with the leave-one-out method2. Formally,

for a predefined rejection rate r0 and N training samples, the threshold is then

experimentally determined as (“|M |” stands for the number of elements in M ):

t = argmax
t

{|{xj|max
i

fi(xj) < 1− t, j = 1, . . . , N}| < N · r0} (12)

The above two approaches to threshold selection try to limit either the error or

the reject rate by some predefined value. Neither of these approaches yields an

“optimal” threshold, a term obviously depending on the criterion used for “op-

timality”. Once such a criterion is defined, the “optimal” threshold can be esti-

mated by optimizing this criterion on the training set. The most simple “optimal-

ity criterion” is a linear combination of the error and reject rate, vee(t)+ vrr(t),

2The resubstitution method is inappropriate for confidence measures that become one for data points from the

training set, like (6).
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where ve/r are weights representing the costs of an error and a reject. In other

words, the “optimal threshold” is the value t that minimizes the normalized risk

risk(t) = e(t) + β · r(t) with β =
cost of a reject

cost of an error
(13)

Chow has shown that in this situation, the optimal threshold for rule (1) can be

found analytically with the use of a remarkable relationship between r(t) and

e(t) [Chow1970]:

e(t) =

∫ t

0

r(s) ds− t · r(t) (14)

It follows that e′(t) = −tr′(t), and the total cost is minimal when

0 = e′(t) + βr′(t) ⇐⇒ t = β

In practical situations, the costs are often hard to quantify and thus to a cer-

tain degree arbitrary. Nevertheless, this result gives a direct interpretation of the

optimal reject threshold for confidence measures that are estimators of the pos-

terior class probability. For “generalized” confidences (in the sense of (2)), the

normalized risk (13) can experimentally be minimized on the training data to

find an optimal threshold for the generalized confidence measure.

Fumera et al. used as a criterion for the optimal class dependent thresholds

t = (t1, . . . , tM) the maximum of the accuracy, defined as [Fumera2000]

A(t) = P (correct|accept) =
1− e(t)− r(t)

1− r(t)
(15)

under the additional constraint that the total reject rate is below a predefined

value r(t) ≤ rmax. In the case of a single global threshold t, it can be concluded

from de l’Hospital’s rule and (14) that the accuracy (15) approaches one as t
goes to zero:

lim
t→0

A(t) = lim
t→0

(

1− r

1− r
−

e

1− r

)

= 1− lim
t→0

e

1− r

= 1− lim
t→0

e′

(1− r)′
= 1− lim

t→0

−tr′

−r′
= 1

Therefore, (15) is not a useful criterion for finding an optimal global reject

threshold t.
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5 Distance Rejection

The posterior probability estimators used for ambiguity rejection might coin-

cidentally find some outliers that should also be distance rejected. In general

however, this is a mere random side effect because the distribution of unknown

classes is unknown and cannot be estimated from the training data. Therefore a

threshold on the absolute distance of a test point from its neighboring training

samples must be set, which is in the simplest case the mean distance to the k
nearest neighbors [Debuisson1993]

g(x) =
1

k

k
∑

j=1

d(x, yj) (16)

In the case k = 1, this is simply the distance to the nearest neighbor. In the

case k = n (all training samples), this is for the Euclidean distance simply the

distance between x and the mean of the training samples x plus an additive

constant (which happens to be the empirical variance of the training data):

1

n

n
∑

i=1

(x− xi)
2 =

1

n

n
∑

i=1

(

(x− x)− (xi − x)
)2

= (x− x)2 +
1

n

n
∑

i=1

(xi − x)2

The measure (16) is not bounded and depends on the absolute magnitudes in

feature space. Therefore the absolute value (16) must be compared to or nor-

malized by some value learnt from the training data.

It should be noted that many other outlier detection schemes have been pro-

posed, many of which try to estimate parameters of the class conditional densi-

ties in the feature space [Markou2003]. An appealing advantage of considering

the distribution of (16) among the training data is not only that it makes no as-

sumption on the distribution in feature space, but also that it reduces the prob-

lem of estimating a multi-variate distribution of feature values to estimating a

univariate distribution of distance values. This makes empirical techniques for

univariate distributions like box plots or the empirical CDF applicable.

Let d1, . . . , dN denote the values (16) for the M training points. The simplest

approach is to base the distance reject threshold on dmax = maxi{di} as in

[Guttormsson1999]. More detailed information can be obtained by measuring
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the empirical cumulative distribution function (CDF)

F (d) = P (g(x) ≤ d) (17)

of the {di} [Arlandis2002]. The problem of the CDF is that it does not com-

pletely describe the distribution, because outliers are to be expected in the im-

possible range where F (d) = 1. Arlandis et al. therefore proposed to extrapolate

F (d) for values d > dmax by a linear fit through the top 5% of the {di}. They

then chose a threshold td of one or slightly above and rejected a test point when

F (g(x)) > td.

In case the training set contains outlier data, the distance threshold for (16) can

be set experimentally by demanding an appropriate reject rate on the training

data.

6 Gamera’s Interface to Confidence Computation

Starting with Gamera version 3.2.0, a new interface for computing, storing and

querying confidence values has been implemented. Earlier versions of Gamera

already used a builtin confidence value computed as in (5), but did not allow for

additional confidence values. The builtin confidence value was used, e.g., in the

grouping algorithm [Droettboom2003] and maybe in third party applications.

Therefore, the new implementation was made in such a way that no legacy

applications are broken, and the new features are optional new additions. To

make the design decisions clear, we must first have a look at the old confidence

interface in Gamera versions up to 3.1.x.

6.1 The legacy interface

In Gamera, classification state and result are stored in the image properties clas-

sification state and id name. The classification state can be one of UNCLASSI-

FIED, AUTOMATIC, HEURISTIC, or MANUAL. id name does not only store

the class decision, but all classes among the k nearest neighbors. This means

that id name is a list where each entry is a tuple (confidence, classname). The

first list entry id name[0] is the actual class decision made by the classifier.

For the confidence value, eq. (5) was used. As this confidence is based on the

distance to the closest class representant alone, the class decision made by the
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knn classifier does not necessarily correspond to the class with the highest con-

fidence value in id name. The reasoning for the choice of (5) as a confidence

measure was that it is defined for all values of k and also for all classes ap-

pearing among the k neighbors. Moreover, it has the advantage that it does not

require an a priori statistical estimation process on the training data, but can

directly be computed from the distances between test point and training data.

The interface to Image.id name is given by the plugins in the category “Classi-

fication”. The plugins with the prefix classify receive obtain the list id name as

input. classify automaic is hereby called by the knn classifier to store the clas-

sification result in the image. get main id, get confidence and match id name

only work on the first entry of id name, i.e. the actual class decision.

6.2 The new interface (since version 3.2)

To avoid breaking existing applications, the image property id name is left un-

changed. This means that it still is a list of class names with a hard coded confi-

dence (5) attached. An additional image property confidence is introduced that

refers to the confidence of the principal class name (id name[0][1]). To allow

for different confidence measures, it is not a single value, but a mapping ob-

ject (“dictionary” in python lingo) where the key is a unique identifier number

(aliased to the uppercase constants described in Tbl. 1) for the confidence mea-

sure, and the value is the corresponding confidence value. This approach is quite

flexible:

• it allows for multiple confidence values, making it possible to decide both

about ambiguity and distance reject

• the user can decide which confidence measures to use and the information

Identifier Constant Description

CONFIDENCE DEFAULT eq. (5)

CONFIDENCE KNNFRACTION eq. (3)

CONFIDENCE INVERSEWEIGHT eq. (6)

CONFIDENCE LINEARWEIGHT eq. (8)

CONFIDENCE NUN eq. (9)

CONFIDENCE NNDISTANCE distance to nearest neighbor

CONFIDENCE AVGDISTANCE eq. (16)

Table 1: Confidence types and their identifier constants in Gamera 3.2
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classification_state : Int
id_name : IdName

confidence: Map<Int, Double>

Image

get_main_id() : String
get_confidence(type : Int) : Double

1..*

...

KNNInteractive

...

confidence_types : IntList

confidence : DoubleList

answer : IdNameList

kNearestNeighbors

add(id_name : IdName, distance : double)
majority()
calulate_confidences()

confidence_types : IntList
_database : ImageList

classify(glyph : Image) :
(id_nameList, confidenceMap) 

classname : String

distance : Double

IdName

Classifier

Figure 4: Class diagram of the classes in the Gamera code that are involved in confidence

calcuation.

about the used confidence measures is stored with Image.confidence

To extend the method Image.get confidence in a backward compatible way, it

now has an optional argument, the confidence measure identifier. When this ar-

gument is omitted, the old confidence value (5) stored in id name[0] is returned.

An overview of the classes involved in the distance calculation in Gam-

era is shown in Fig. 4. The actual calculation is done in kNearestNeigh-

bor.calculate confidences(), based upon the distances to the k nearest neigh-

bors and optionally additional information collected during the loop over the

distances to the training prototypes. A more detailed overview of the knn clas-

sification process can be seen in Fig. 5.

The fact that the confidence calculation is performed in a class that does not

have access to the training data, but only to the distances between the test glyph

and the prototypes, restricts the choice for confidence measures to those that are

to be computed from this information alone, like (5), (9) or (7). It also allows

for distance rejection based on summary statistics for (16), because the con-

fidence calculation can simply return the average distance, which can then be

transformed to a meaningful “confidence” value in an independant second step
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:KNNInteractive

keeps a priority

queue of the

k nearest neigh−

hbors to glyph

makes class decision

(majority vote) and

computes confidences

glyph:Image

:kNearestNeighbors

add(d.classname, distance(glyph,d))

majority()

calculate_confidences()

get id_names, confidences

answer, confidence

constructor

confidence_types

glyph

classify

(sets id_name
and confidence)

loop for  d  in  _database

Figure 5: Sequence diagram showing the knn classification process of a test image glyph in the

Gamera framework.

thereafter.

To allow for estimating a rejection threshold for (16) from the training data, a

new method knndistance statistics(k) has been added to kNN classifiers. This

computes (16) for all training points with the leave-one-out method. The result-

ing list can then be further analyzed with the statistical methods from the SciPy

module [SciPy], like scipy.stats.gaussian kde for a gaussian kernel estimate of

the probability density function. If several evaluations of the empirical distri-

bution of these values are necessary, the class EmpiricalCDF from Listing 1

can be used. This code can also be used as a starting point for implementing

extrapolations like those suggested in [Arlandis2002].
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class EmpiricalCDF(object):

def __init__(self, data):

self.n = len(data)

self.data = [x for x in data] # copy data

self.data.sort()

def cdf(self, x):

from bisect import bisect

pos = bisect(self.data, x)

if pos < 1:

return 0.0

elif pos >= self.n:

return 1.0

else:

# linear interpolation between neighboring points

a = self.data[pos-1];

b = self.data[pos]

return float(pos + float(x - a)/(b-a)) / self.n

def invcdf(self, q):

pos = int(q*self.n)

if pos >= self.n:

return self.data[self.n-1]

elif pos <= 0:

return self.data[0]

else:

# linear interpolation between neighboring points

a = self.data[pos-1]

b = self.data[pos]

fa = float(pos)/self.n

fb = float(pos+1)/self.n

return (q-fa)*(b-a)/(fb-fa) + a

Listing 1: A Python implementation to compute the cumulative distribution function (17) and

its inverse from a list of data points
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7 Detecting Touching and Broken Characters -

A Case Study

To demonstrate how the interface described in the preceding section can be

deployed in a practical application, let us consider the problem of rejecting noise

and distorted characters. In [Dalitz2008], a recognition system for byzantine

chant notation is described. The printed books, on which the system was tested,

contained not only considerable noise, but also many broken symbols, touching

symbols, and also unknown symbols not present in the training data, like large

(and mostly broken) intial characters or rare symbols not found on the pages

used for training.

The system described in [Dalitz2008] dealt with noise by including sample

noise in the training data, and with broken symbols by Droettboom’s group-

ing algorithm [Droettboom2003]. No attempt was made to sort out touching

and unknown symbols. The training and test data from that study provides a

nice test case how well both noise and distorted characters can be detected by

distance rejection. Here the term “distorted characters” is used for the set of

broken, touching, or unknown symbols, and “noise” means symbols not repre-

senting any document content.

7.1 The method

The method is based on the mean distance g(x) of a test symbol x to its k
nearest neighbor training samples, as defined in (16). The rejection threshold

for this value is chosen in such a way that the probability for rejecting a sane

symbol (“false positive”) is below a predefined value efp.

Under the assumption that the training data contains neither noise nor distorted

symbols, then the cumulative distribution function F (d) (see (17)) for the mean

distance (16) among the sane symbols can be estimated with a leave-one-out

method from the training data. The rejection threshold dt leading to a false pos-

itive rate efp is then simply

efp ≥ P (g(x) > dt) = 1− F (dt) ⇐⇒ dt ≥ F−1(1− efp) (18)

In the Gamera framework, dt can thus be estimated with the classifier method

knndistance statistics and the class EmpiricalCDF from listing 1. The resulting

Python code for rejecting noise and distorted symbols is shown in listing 2.
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# initialize classifier

classifier=knn.kNNInteractive([], [’feature1’,...], 0)

classifier.num_k = k

classifier.from_xml_filename(training_datafile)

classifier.confidence_types = [CONFIDENCE_AVGDISTANCE]

# compute rejection threshold d_t

stats = classifier.knndistance_statistics()

cdf = EmpiricalCDF([s[0] for s in stats])

d_t = cdf.invcdf(e_fp)

# classification with distance reject option

classifier.classify_list_automatic(glyphs)

for g in glyphs:

if g.get_confidence(CONFIDENCE_AVGDISTANCE) > d_t:

# do some reject operation

Listing 2: Python code using the library functions described in section 6 for distance rejection

with a chosen false positive rate efp.

7.2 Experimental results

The rejection method was tested on 22 pages from the prints HA-1825 (Heir-

mologion Argon, Constantinople, 1825) and AM-1847 (Anastasimatarion, Con-

stantinople, 1847). The training data was the same as in [Dalitz2008], but with

all glyphs representing noise removed, so that the training data only contained

sane symbols. The test images were segmented with connected component (CC)

labeling, and each CC was classified on the training data. The sizes of training

and test data are listed in Tbl. 2.

According to (18), choosing a rejection threshold based on a predefined value

efp should have the effect that the fraction of sane symbols to be rejected is

about efp. Fig. 6 shows that this holds indeed, though only approximately. Ac-

tually, in the present experimental setup, the observed false positive rate was

slightly higher. This is a general tendency when the distance distribution func-

training test glyphs

source glyphs total distorted noise

HA-1825 3411 5269 315 920

AM-1847 2051 6280 528 1851

total 5462 11549 843 2771

Table 2: Size of training and test data in the experimental study.
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Figure 6: The actual false positive rates achieved with the threshold based on the CDF estimated

from the training data.

tion is estimated from the training data. A theoretical argument that might

come to mind is that although leave-one-out estimators have been found be

nearly unbiased, they have a high variance for small sample sizes [Hand1986]

[Isaksson2008]. This should however lead both to over- and underestimation.

From a practical point of view, when the training prototypes have been manu-

ally selected, they tend to contain fewer poor (or “untypical”) prototypes than

the real test data. This holds particularly for the present setup, because the train-

ing data purposely only contains “sane” symbols. This has the effect that the

distance variation in the test data tends to be higher than in the training data,

thus leading to more distance rejects, some of which also are false positives.

The performance of the distance rejection were very similar on both prints, so

that in Fig. 7 the summarized error rates over both prints are shown. In the ROC

curve [Webb2002], the observed false positive rate is drawn on the horizon-

tal axis, and the rate of the correctly rejected glyphs (the “true positives”) on

the vertical axis. It turned out that the performances for noise and for distorted

characters were quite different. While distorted symbols could be detected with

good accuracy even at low false positives rates, the same did not hold for noise.

This is due to the fact that touching or broken characters tend to be rather differ-

ent from the sane symbols, while noise can be of any shape and is often similar

to dots or commas also present among the sane symbols.
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Figure 7: ROC curve for the detection of distorted symbols and noise in two historic prints with

Byzantine neume notation.

8 Conclusion

Hopefully, this paper can serve as a good starting point for implementing re-

ject options for recognition applications based on the Gamera framework. The

experimental results presented in section 7 show that the methods now imple-

mented in Gamera already work well for detecting distorted characters. Should

the confidence measures built into Gamera turn out to be not sufficient for the

application in question, the detailed description of the confidence calculation

process in section 6 should make it easy to add custom confidence measures to

the Gamera code.
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