
Hough Parameter Space Regularisation
for Line Detection in 3D

Manuel Jeltsch1, Christoph Dalitz1 and Regina Pohle-Fröhlich1

1Institute for Pattern Recognition, Niederrhein University of Applied Sciences,
Reinarzstr. 49, 47805 Krefeld, Germany

manuel.jeltsch@gmail.com, {christoph.dalitz, regina.pohle}@hsnr.de

Keywords:
Hough transform, 3D line detection, ridge detection, laser scan data.

Abstract:
The Hough transform is a well known technique for detecting lines or other parametric shapes in
point clouds. When it is used for finding lines in a 3D-space, an appropriate line representation
and quantisation of the parameter space is necessary. In this paper, we address the problem that a
straightforward quantisation of the optimal four-parameter representation of a line after Roberts
results in an inhomogeneous tessellation of the geometric space that introduces bias with respect
to certain line orientations. We present a discretisation of the line directions via tessellation of an
icosahedron that overcomes this problem whenever one parameter in the Hough space represents
a direction in 3D (e.g. for lines or planes). The new method is applied to the detection of ridges
and straight edges in laser scan data of buildings, where it performs better than a straightforward
quantisation.

1 INTRODUCTION

Originally proposed for line detection in a 2D
space (Hough, 1962), the Hough transform has
meanwhile become a standard tool for detecting
a wide variety of parametric shapes (Mukhopad-
hyay and Chaudhuri, 2015). Unlike other shape
detection algorithms, the Hough transform does
not work on images, but on point clouds. Its ap-
plication to images thus requires a preprocessing
step for filtering candidate points. The idea of
the Hough transform is to consider each candi-
date point as a “vote” for all predefined shapes
to which it might belong. The predefinition of the
shapes is done by a discretisation of the parame-
ter space. Shapes with many points will then get
many votes in the parameter space.

Time and space complexity of the Hough
transform not only depend on the size of the point
cloud, but also on the dimension of the param-
eter space and the coarseness of the parameter
discretisation. For ellipse detection in 2D, e.g.,
the parameter space is five dimensional, and there
have been a number of suggestions for making
this problem more tractable (Mukhopadhyay and

Chaudhuri, 2015). For line detection in 2D, lines
are typically represented with the Hessian nor-
mal form, which results in a two dimensional pa-
rameter space. In three dimensions, the Hessian
normal form does not represent lines, but planes,
and a straightforward generalisation of the origi-
nal Hough transform to 3D thus leads to plane de-
tection with a three dimensional parameter space
(Ishida et al., 2012).

For line detection in 3D, an appropriate para-
metric line representation needs to be chosen.
The text book line representation is the vector

form ~a + t~b, where ~a is a point on the line and ~b

(with ‖~b‖ = 1) is the direction of the line. Even
though this line representation is redundant and
leads to a five dimensional parameter space, it
has indeed been used for line detection with the
Hough transform (Moqiseh and Nayebi, 2008).
One way to reduce the space and time complexity
is a hierarchical approach that first searches for
peaks in the slope parameter space, which is only
two dimensional, and to further investigate these
peaks in the intercept parameter space, which is
two dimensional too (Bhattacharya et al., 2000).

A different way to reduce the complexity is to

This is a self-archived version of a paper that appeared in the Proceedings of the

International Conference on Computer Vision Theory and Applications (VISAPP), pp. 345-352 (2016)

use a non-redundant line representation, thereby
reducing the number of dimensions. A minimal
and optimal representation of a line with four pa-
rameters was given by Roberts (Roberts, 1988;
Schenk, 2004). This representation has already
been used for needle detection in 3D ultrasonic
images (Zhou et al., 2008; Qiu et al., 2013).

In the present paper, we show that a straight-
forward discretisation of Roberts’ parameter
space leads to an inhomogeneous sampling pat-
tern that favours certain directions. To overcome
this shortcoming, we suggest a discretisation of
two parameters, namely the angles specifying the
normal vector of Roberts’ plane through the ori-
gin, by means of a sphere tessellation. As a use
case, we apply the new method to edge detection
in laser scan data, where the candidate points
are prefiltered based on the local curvature in the
point cloud. In our experiment, the new approach
lead to better results than a straightforward dis-
cretisation with the same number of parameter
cells.

This paper is organised as follows: in section 2,
we give a general description of the Hough trans-
form, introduce Roberts’ line representation and
our parameter space discretisation. In section 3,
we describe how the method can be used to de-
tect arbitrarily oriented ridges and other straight
edges in 3D laser scan data.

2 LINE DETECTION IN 3D

Before we specialise the Hough transform for 3D
line detection, let us first describe the Hough
transform in its most general case, and then dis-
cuss the problems of 3D line representation and
its parameter space discretisation.

2.1 Hough transform

Let X = {~x1, . . . , ~xn} be a point cloud in which
we look for curves defined by k parameters and
described in the parametric form

f(~x, p1, . . . , pk) = 0 (1)

For a given list of parameters p1, . . . , pk, all points
~x on the curve fulfil Eq. (1). The basic idea of
the Hough transform is to consider this equation
not as a condition for ~x, but for the parameters
p1, . . . , p1: all curves to which a given point be-
longs are given by all parameter values that fulfil
Eq. (1). Generally, the number of possible curves

Algorithm 1 Hough transform

Input: point cloud X = {~x1, . . . , ~xn}, parameter
values Pi = {pi1, . . . , piNi} for 0 < i ≤ k

Output: voting array A of size N1 × . . .×Nk
1: A(p1, . . . , pk)← 0 for all p1, . . . , pk
2: for ~x ∈ X do
3: for p1 ∈ P1 do
4: . . .
5: for pk−1 ∈ Pk−1 do
6: p′ ← g(~x, p1, . . . , pk−1) . cf. Eq. (2)
7: pk ← nearest neighbour to p′ from Pk
8: A(p1, . . . , pk)← A(p1, . . . , pk) + 1
9: end for

10: . . .
11: end for
12: end for
13: return A

is infinite, but it can be made finite by a discreti-
sation of the parameter space: each parameter pi
is assumed to be limited to a range of Ni values
from a finite set Pi = {pi1, . . . , piNi}, where the
number Ni of possible parameter values may vary
from parameter to parameter.

Each of the discrete parameter values then
represents a cell in parameter space, and a point
~x votes for all cells that contain parameters fulfill-
ing Eq. (1). To make the voting process tractable,
Eq. (1) must be rewritten as

g(~x, p1, . . . , pk−1) = pk (2)

Then all parameter cells, to which ~x belongs, can
be determined in a loop over all parameter values
P1 × . . .× Pk−1 and by computing the cell of the
last parameter through Eq. (2). The resulting
algorithm is listed as Algorithm 1.

2.2 Line parametrisation

For the purpose of algorithmic efficiency it is ad-
visable to use a parametrisation that is unique,
does not suffer from singularities and is non-
redundant. Such a parametrisation for lines in 3D
that uses only four parameters (x′, y′, φ, θ) was
given by Roberts (Roberts, 1988).

The direction of a line can be specified by the
two parameters φ for horizontal orientation (az-
imuth) and θ for altitude (elevation) (see Fig. 1).

The directional vector ~b is obtained from θ and φ
through

~b =

bxby
bz

 =

cosφ cos θ
sinφ cos θ

sin θ

 (3)

346

x

y

z

θ

φ

(a)

Figure 1: φ and θ as azimuth(blue) and elevation(red)

x

y

z

b

(x',y')

 ⃗

Figure 2: Line parametrisation by Roberts with x′, y′

(red) and the line’s directional vector ~b (blue)

Since two anti-parallel directional vectors de-

scribe the same line, the vectors ~b have to be con-
fined to a half-space for the representation to be
unique. This can be achieved by restricting the
angle ranges to 0 ≤ θ ≤ π

2 and −π < φ ≤ π. The
remaining redundancy through anti-parallel vec-
tor pairs in the (x, y)-plane (bz = 0) is removed
with the restrictions by ≥ 0 if bz = 0 and bx = 1
if by = bz = 0.

When the position of the line is represented
by an arbitrary anchor point, this leads to three
parameters of which one is redundant. To remove
this redundancy, Roberts first defines a plane
which passes through the origin and is perpen-
dicular to the line. The two parameters x′ and
y′ are then defined as the coordinates of the in-
tersection of the line and the plane in the plane’s
own 2D coordinate frame (see Fig 2).

From an arbitrary point ~p = (px, py, pz) on the

line, the parameters x′ and y′ are obtained with:

x′ =

(
1− b2x

1 + bz

)
px −

(
bxby

1 + bz

)
py − bxpz

(4a)

y′ = −
(
bxby

1 + bz

)
px +

(
1−

b2y
1 + bz

)
py − bypz

(4b)

A point ~p on the line can in turn be obtained
with:

~p = x′ ·


1− b2x

1+bz

− bxby
1+bz

−bx

+ y′ ·


− bxby

1+bz

1− b2y
1+bz

−by

 (5)

To utilise this parametrisation for a 3D Hough
transform, a suitable discretisation of the param-
eter space has to be chosen.

2.3 Parameter regularisation

The discretisation of θ and φ determines the ori-
entations that can be detected by the Hough
transform. A näıve approach is the uniform dis-
cretisation of the angles θ and φ with constant
step size ∆:

θ = θmin + i ·∆, 0 ≤ i ≤ θmax − θmin

∆
(6a)

φ = φmin + j ·∆, 0 ≤ j ≤ φmax − φmin

∆
(6b)

The number of resulting direction vectors is

nuniform =

⌊
(θmax − θmin) · (φmax − φmin)

∆

⌋
(7)

A step size of 1◦, or ∆ = π/180, with −π < φ ≤ π
and 0 ≤ θ ≤ π

2 then yields a hemisphere consist-
ing of 32400 directional vectors. These, however,

Figure 3: Quarter hemisphere of vertices obtained by
uniform discretisation of φ and θ

347

are not equidistantly distributed on the hemi-
sphere’s surface (see Fig. 3). While the arc dis-
tance of adjacent vectors on the hemisphere’s
equator is ∆, it decreases as the elevation ap-
proaches π/2.

An accumulator array, which uses these vec-
tors would therefore contain considerably more
cells for nearly vertical lines than for lines that are
almost parallel to the x-axis for example. This
has the effect that the resolution for horizontal
lines is much coarser than for vertical lines. The
Hough transform would therefore be biased in
favour of horizontal lines due to their bigger cells.
In other words: this parameter space discretisa-
tion is not rotation invariant; a rotation of the
point cloud input to the Hough transform would
lead to different results due to the variation in
angular accuracy.

In the following, we describe two different al-
ternative methods for achieving a more homoge-
neous discretisation of the direction space. The
aim is to achieve an equidistant distribution of
directional vectors, so that the arc distances of
neighbouring vector end points on the hemisphere
surface are approximately constant.

Cosine-corrected discretisation of φ. For
the uniform discretisation (6a) & (6b) with con-
stant angle step size ∆, the nearest neighbour dis-
tance of direction vector end points with the same
elevation θ is

dNN(θ) = ∆ · cos(θ) (8)

To compensate for this effect, it is natural to make
the step-sizes for θ and φ different. When the
step-size ∆θ = ∆ is kept constant, the step-size
∆′φ for φ should increase with θ:

∆′φ(θ) =
∆θ

cos(θ)
= ∆θ · sec(θ) (9)

This approach, however, only provides a constant
distance dNN(θ) = ∆θ in the unlikely case when
∆′φ is in integer fraction of 2π. Otherwise the arc

distance between φmax and φmin is less than ∆′φ.
It is thus necessary to smooth out this difference
and to define the step size ∆φ by

∆φ(θ) = (φmax − φmin)

/⌊
φmax − φmin

∆′φ(θ)

⌋
(10)

Using ∆θ = ∆ and ∆φ(θ) for discretisation yields
an approximately equidistant direction sampling

(a) (b) (c) (d)

Figure 4: Octahedron after 0, 1, 2, 3 tessellation steps

(a) (b) (c) (d)

Figure 5: Icosahedron after 0, 1, 2, 3 tessellation steps

with dNN(θ) ≈ ∆. The direction vectors are cal-
culated with

θi = θmin + i ·∆ (11a)

φij = φmin + j ·∆φ(θi) (11b)

~bij =

cosφij cos θi
sinφij cos θi

sin θi

 (11c)

where

i = 0, 1, . . . ,

⌊
θmax − θmin

∆θ

⌋
j = 0, 1, . . . ,

⌊
φmax − φmin

∆′φ (i ·∆ + θmin)

⌋
The number of resulting direction vectors is

ncoscorr =

⌊
θmax−θmin

∆

⌋∑
i=0

⌊
φmax − φmin

∆′φ (i∆ + θmin)

⌋
(12)

A step size of 1◦ (∆ = π/180) then yields 20763
instead of 32400 direction vectors.

The cosine-corrected discretisation (11) in-
deed reduces direction inhomogeneity and the
size of the accumulator array. But dNN is still
only approximation constant, and direction vec-
tors form an irregular pattern which leads to ap-
parently random fluctuations of the arc distance
in θ-direction. For an approximately equidistant
distribution with desirable symmetry properties
the tessellation of a Platonic solid is preferable.

Tesselation of a Platonic solid. In computer
graphics, tessellation means the process of frag-
menting a polygon into its subareas, to enable
separate computation of new information and to
visualise changes to the shape of the polygon.

348

Since graphics hardware is generally designed to
process triangles, polygon triangulation is most
commonly used for tessellation (Nvidia, 2010).

One use-case are refinement-algorithms, which
use tessellation to increase the resolution of a
model and smooth its surface. Then displacement
mapping is used, which is much more effective on
polygons with a great amount of vertices. It uses
a height map to displace the polygon’s vertices
and can be used to create detailed surface tex-
tures. Since Version 11, Microsoft’s DirectX pop-
ularly provides this technique to increase realism
in 3D graphics.

Similarly a simple polyhedron can be tessel-
lated repeatedly and its vertices be normalised to
resemble a unit sphere as accurately as needed.
Finally, after removing anti-parallel vectors, the
resulting vertices can be used as directional vec-
tors for the 3D Hough transform.

To obtain an almost uniform surface density
and a nearly equidistant distribution of the direc-
tion vectors, it is advisable to use platonic solids
as the starting point of the tessellation because of
their symmetry properties. Each vertex of a pla-
tonic solid has the exact same number of neigh-
bouring vertices and each edge between the ver-
tices has the same length. A platonic solid there-
fore defines an exactly equidistant distribution of
directional vectors on a sphere.

An Octahedron (see Fig. 4(a)) for example
consists of eight triangles, six vertices, twelve
equally long edges and is invariant under rota-
tions by 90◦ around any axis. Its six vertices are
defined as

O = {(±1, 0, 0) , (0,±1, 0) , (0, 0,±1)} (13)

An icosahedron (see Fig. 4(a)) consists of 20 tri-
angles, twelve vertices, 30 equally long edges and
can be defined using the golden ratio ϕ:

I = {(0,±1,±ϕ) , (±1,±ϕ, 0) , (±ϕ, 0,±1)}

ϕ =
1

2

(
1 +
√

5
)

(14)

Each triangle can now be divided into four new
ones using polygon triangulation by inserting a

division no. directions dNN

1 21 0.5465
2 81 0.2794
3 321 0.1412
4 1281 0.0713
5 5121 0.0389
6 20481 0.0180

Table 1: Number of directions and nearest neigh-
bour distance dNN for subsequent icosahedron sub-
divisions.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4

C
o
ef
fic
ie
n
to
f
va
ria
tio
n

Subdivisions

Octahedron
Icosahedron

Figure 6: Coefficient of variation cv = σ/µ for the
length of all edges of an Octahedron and an Icosahe-
dron after up to 4 tessellation steps

new vertex ~d between each pair of vertices (~a,~b)
of the triangle and normalising its length:

~d =
~a+~b

‖~a+~b‖
(15)

Doing so for all of the polygon triangles results in
a new vertex for each edge and three new edges
for each new vertex:

|V ′| = |V|+ |E| (16)

|E ′| = 4 · |E| (17)

where V is the set of vertices, E the set of edges,
and |.| stands for the number of elements. This
can be repeated as often as necessary for the de-
sired level of granularity. Table 1 shows the num-
ber of unique directions and the average nearest
neighbour arc distances for different numbers of
icosahedron subdivisions. For six subdivisions,
the arc distance approximately corresponds to
1◦ = π/180 ≈ 0.1745.

It should be noted that there is only a fi-
nite number of Platonic solids, and that ver-
tices obtained by subdivisions therefore cannot be
exactly equidistantly distributed. The distance
variation resulting from our method is not high,
however, especially when it starts with an icosa-
hedron, which is the Platonic with the largest
number of vertices. The coefficient of variation
cv = σ/µ for the length of all edges of a tessel-
lated icosahedron is much lower than that of a
tessellated octahedron (see Fig. 6) which implies
that it is a better approximation of an equidistant
distribution.

Application to 3D Hough transform. In
Algorithm 1, there is the freedom to choose which

349

Algorithm 2 Hough transform for 3D lines

Input: point cloud X = {~x1, . . . , ~xn},
direction vectors B = {~b1, . . . ,~bN1

},
x′-discretisation X ′ = {x′1, . . . , x′N2

},
y′-discretisation Y ′ = {y′1, . . . , y′N3

}
Output: voting array A of size N1 ×N2 ×N3

1: A(~bi, x
′
j , y
′
k)← 0 for all ~bi, x

′
j , y
′
k

2: for ~x ∈ X do
3: for ~bi ∈ B do
4: (x′, y′)← computed after Eq. (4)
5: (x′j , y

′
k)← NN to (x′, y′) from X ′ × Y ′

6: A(~bi, x
′
j , y
′
k)← A(~bi, x

′
j , y
′
k) + 1

7: end for
8: end for
9: return A

parameters are utilised for the predefined loops in
lines 3-5, and which remaining parameters are to
be computed for all values of the other predefined
parameter values. In our discretisation, it is much
more complicate to find the closest direction for
a given direction than to find the closest x′ and
y′ values. Consequently, the loop should go over
the precomputed discrete directions and x′ and y′

are to be computed for each input point and each
direction with Eq. (4). The resulting algorithm is
listed in Algorithm 2.

3 USE CASE: RIDGE
DETECTION

To test the 3D line detection, we used airborne
laser scanning data of the city of Krefeld. The
data was scanned with an average step size of
about 24cm in the x and y direction. We com-
bined these data with land register data in order
to extract point clouds of 20 individual buildings.
We extracted candidate points from each point
based on local curvature and compared the even-
tually detected 3D lines with the expected results.
The following subsections describe the extraction
criterion for the candidate points and the results.

3.1 Point cloud filtering

Our criterion for filtering ridge and edge candi-
dates was based on the observation that edge and
ridge points should have a higher curvature than
their neighbourhood. We estimated the curvature

(a) Magnitude of highest eigenvalues (blue
= low, red = high)

(b) Filtered candidate points (green = after
global thresholding, red = after local thresh-
olding)

Figure 7: Estimated curvature (highest eigenvalue)
of a surface point cloud and the selected candidate
points.

with the Point Cloud Library (PCL)1 function
PrincipalCurvaturesEstimation.

This function estimates as a first step the sur-
face normal for every point with an analysis of the
eigenvectors and eigenvalues of a covariance ma-
trix created from the k nearest neighbours of the
query point. In our case we used k = 20, because
for smaller values of k the normals were too noisy
and for higher values of k we observed rotated
surface normals at the borderline between small
surfaces. Once all surface normals have been
computed, all normals from the k-neighbourhood
around a query point are projected in the tangent
plane. In the projected plane, the covariance ma-
trix of the projected lines is calculated and its two
eigenvalues are returned as the curvature estima-
tion.

We used the highest eigenvalue as a curvature
estimation. An example can be seen in Fig. 7(a).

1http://pointclouds.org/

350

http://pointclouds.org/

location n muni mreg location n muni mreg location n muni mreg

Anrather 4 3 4 Glockenspitz 8 5 5 Moerser 1 1 1

Bonifatius 2 2 2 Grenz 4 2 3 Oelschlaeger 2 2 2

Buschdonk 3 2 3 Hardenberg 5 4 3 Seiden 4 3 3

Dreikoenigen 1 1 1 Huelser 6 2 5 Steckendorf 2 1 1

Evgl.Kirche 7 4 4 Ispels 9 5 7 Tannen 3 1 2

Friedr.-Ebert 7 5 7 Knein 5 1 3 Wieland 4 4 4

Gladbacher 5 2 3 Koenigs 8 4 6 total 90 54 69

Table 2: The number of ground truth lines (n) for roofs at different locations in our dataset, and the number
of detected lines with a Hough transform with the näıve uniform discretisation (muni) and with the regularised
discretisation via tessellation (mreg).

On these curvature values, we first performed
a global thresholding operation by selecting all
points with the highest eigenvalue greater than
10% of the total maximum value and the lowest
eigenvalue less than 10% of the total maximum
value (green and red points in Fig. 7(b)). On
these points, we then applied a local threshold
by removing all points with a curvature less than
the mean curvature of all k = 20 neighbors (red
points in Fig. 7(b)).

3.2 Results

For a noisy data set of 20 complete point clouds
of roofs, we have manually notated the ridges and
edge lines. This lead to the numbers of ground
truth lines listed in the column labelled n in Ta-
ble 2. On the points clouds that have been fil-
tered as described in section 3.1, we have applied
the Hough transform with our direction tessella-
tion as follows: the step size in the (x′, y′)-plane
was set to 0.5, which is approximately two times
the NN distance in the scanning raster, and the
number of directions was set to 1281, which cor-
responds to four subdivisions of an icosahedron.

In the accumulator array of the Hough trans-
form for each roof, we selected with a non-
maximum suppression (Burger and Burge, 2009)
the n (the number of ground truth lines) most
voted lines and counted, how many of the ground
truth lines have been detected. For the non-
maximum suppression, the graph from the tesse-
lation process was reused for neighbour relations.

Two vectors ~a and ~b are neighbours, if there is
an edge (a, b) in the graph. For each vertex we
then defined a neighbourhood with path length
l = 4 as every vertex that can be reached with a
minimum of l edges.

The results are shown in the column labelled
mreg in Table 2. For comparison, we have also
counted the number of correctly detected lines

with the näıve uniform angle discretisation with
approximately the same total number of differ-
ent directions (column muni in Table 2). The
new method lead to an overall detection rate of
69/90 ≈ 77% of the ground truth lines, while the
näıve discretisation only detected 54/90 = 60% of
the ground truth lines. This is a clear improve-
ment.

A closer look at the reasons for missed ground
truth lines showed that in 11 cases a ground truth
line showed up as two similar lines detected by
the Hough transform. One example is shown in
Fig. 8(a): here a single ridge shows up as two
lines due to some curvature at the end. Another

(a) Example with five of the six lines being
detected. One of the ground truth lines is
split up into two different detected lines.

(b) Another example of a split line

Figure 8: Example Results of the 3D Hough Trans-
form

351

typical example can be seen in Fig. 8(b): due to
noise in the data, the ridge is not represented as a
line, but as a rectangle in which the two diagonals
are the longest lines and are thus detected by the
Hough transform.

This means that of the 90 highest maxima in
the Hough accumulator arrays, actually 69+11 =
80 correspond to ground truth lines. This leads to
a rate of 80/90 ≈ 89% lines among those returned
by the Hough transform that are correct.

4 CONCLUSIONS

The presented discretisation of the direction pa-
rameters for the Hough transform for 3D line de-
tection is a simple method to avoid an uneven
distribution of directions. The method is not re-
stricted to 3D line detection, but can be generally
used for the Hough transform when parameters
in the Hough space represent a direction in a 3D
space, e.g. for plane detection in 3D.

The application to ridge detection shows that
the new parameter space representation for 3D
line detection works quite well even on very noisy
data. The noise in our data was due to the very
simple rules for filtering candidate points that
possibly belong to ridges. Further improvements
for this specific use case are to be expected when
more sophisticated methods are used for candi-
date point selection.

In this paper, we only considered discretisa-
tion approaches that produce symmetric and reg-
ular direction patterns. It would be interest-
ing to investigate how these compare to irregular
patterns, e.g. obtained from Fibonacci numbers
(González, 2010) or generalisations thereof (An-
derson, 1996). The use of such patterns would
however make it necessary to find a well-defined
way for implementing the non-maximum suppres-
sion. In our approach, this can be done in a nat-
ural way, because the tesselation algorithm pro-
duces a neighbourship graph as a by-product.

ACKNOWLEDGEMENTS

We are grateful to the Katasteramt Krefeld for
providing us with the laser scan data from Geoba-
sisdaten der Kommunen und des Landes NRW
c©Geobasis NRW 2014. Moreover, we would like
to thank the anonymous reviewers for their help-
ful comments.

REFERENCES

Anderson, P. G. (1996). Advances in linear pixel
shuffling. In Bergum, G., Philippou, A., and
Horadam, A., editors, Applications of Fibonacci
Numbers, pages 1–21. Springer, Netherlands.

Bhattacharya, P., Liu, H., Rosenfeld, A., and Thomp-
son, S. (2000). Hough-transform detection of
lines in 3-D space. Pattern Recognition Letters,
21(9):843–849.

Burger, W. and Burge, M. (2009). Principles of
Digital Image Processing - Core Algorithms.
Springer, London.

González, A. (2010). Measurement of areas on a
sphere using Fibonacci and latitude-longitude
lattices. Mathematical Geosciences, 42(1):49–64.

Hough, P. V. (1962). Method and means for recog-
nizing complex patterns. US Patent 3,069,654.

Ishida, Y., Izuoka, H., Chinthaka, H., Premachandra,
N., and Kato, K. (2012). A study on plane ex-
traction from distance images using 3D Hough
transform. In Soft Computing and Intelligent
Systems (SCIS) and International Symposium
on Advanced Intelligent Systems (ISIS), pages
812–816.

Moqiseh, A. and Nayebi, M. (2008). 3-D Hough trans-
form for surveillance radar target detection. In
IEEE Radar Conference RADAR ’08, pages 1–5.

Mukhopadhyay, P. and Chaudhuri, B. B. (2015). A
survey of Hough transform. Pattern Recognition,
48(3):993–1010.

Nvidia (2010). NVIDIA GF100: World’s fastest
GPU delivering great gaming performance with
true geometric realism. http://www.nvidia.
com/object/IO_86775.html.

Qiu, W., Yuchi, M., Ding, M., Tessier, D., and
Fenster, A. (2013). Needle segmentation us-
ing 3D Hough transform in 3D TRUS guided
prostate transperineal therapy. Medical physics,
40(4):042902.

Roberts, K. (1988). A new representation for a line.
In Computer Vision and Pattern Recognition
CVPR’88, pages 635–640.

Schenk, T. (2004). From point-based to feature-based
aerial triangulation. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 58(5):315–
329.

Zhou, H., Qiu, W., Ding, M., and Zhang, S. (2008).
Automatic needle segmentation in 3D ultra-
sound images using 3D improved Hough trans-
form. In Medical Imaging, page 691821.

352

http://www.nvidia.com/object/IO_86775.html
http://www.nvidia.com/object/IO_86775.html

