Verifizierende Testverfahren

Spezifikation

Um einen Algorithmus zu schreiben, muss das zu lösende Problem genau beschrieben sein. Eine Spezifikation ist

- vollständig, wenn alle Anforderungen/alle relevanten Rahmenbedingungen angegeben wurden.
- detailliert, wenn klar definiert ist, welche Hilfsmittel/ Operationen zur Lösung zugelassen sind.
- unzweideutig, wenn klar angegeben ist, wann eine vorgeschlagene Lösung akzeptabel ist.

186

187

Spezifikation (2)

Beispiel: Eine Lok soll die in Abschnitt A stehenden Wagen 1, 2, 3 in der Reihenfolge 3, 1, 2 auf Gleis C abstellen.

Vollständigkeit:

- Wieviele Wagen kann die Lok auf einmal ziehen?
- Wieviele Wagen passen auf Gleisstück B?

Detailliertheit:

• Was kann die Lok? (fahren, koppeln, entkoppeln)

Unzweideutigkeit:

• Darf die Lok am Ende zwischen den Wagen stehen?

Spezifikation (3)

Warum Spezifikation?

- Spezifikation ist Teil des Feinentwurfs
- für jede Funktion beschreiben, was sie tut
- letzte Phase vor Implementierung
- Problemstellung präzisieren
- Entwicklung unterstützen
- Überprüfbarkeit verbessern
- Wiederverwendbarkeit erhöhen

Ziel: Erst denken, dann den Algorithmus entwerfen.

informale Spezifikation

- beschreibe kurz für jede Funktion, was sie tut
- enthält mindestens die Rolle der Parameter/Rückgabewerte und ggf. die Seiteneffekte
- weit verbreitet, gut für die Dokumentation geeignet
- nicht exakt genug, um die Einhaltung der Spezifikation nachzuweisen

Beispiel: reactor.isCooking() liefert true, wenn Temperatur des Reaktors 100 Grad Celsius erreicht.

Probleme:

- was bedeutet erreicht?
- was passiert bei Temperaturen unter 100 Grad?

190

formale Spezifikation

- mittels formaler Beschreibungssprache die Semantik der Funktionen exakt festlegen
- eine ausführbare Spezifikationssprache kann als Prototyp dienen
- Möglichkeit des Programmbeweises
- aber: aufwändig, erhöhte Anforderungen an Verwender

eigenschaftsorientiert:

- axiomatisch: Objekte werden aus Typen konstruiert und durch logische Zusicherungen spezifiziert
- algebraisch: definiert Algebren über Objekte und deren Funktionalität

exemplarische Spezifikation

- Testfälle beschreiben Beispiele für das Zusammenspiel der Funktionen samt erwarteter Ergebnisse
- formales Verfahren, trotzdem leicht verständlich
- nach der Implementierung dienen die Testfälle zur Validierung
- durch extreme programming populär geworden

Beispiel:

```
reactor.setTemperature(99);
assert(!reactor.isCooking());
reactor.setTemperature(100);
assert(reactor.isCooking());
```

191

formale Spezifikation (2)

modellorientiert:

- Modellbeschreibung durch reiche, formale Sprache
- Beispiele: VDM, Z

automatenorientiert:

- beschreibt Zustände und Übergänge des Systems
- Beispiele: Petri-Netze, State Charts

-

Bestandteile der formalen Spezifikation

- 1. Ein Algorithmus berechnet eine Funktion, daher:
- (a) festlegen der gültigen Eingaben (Definitionsbereich)
- (b) festlegen der gültigen Ausgaben (Wertebereich)
- 2. Funktionaler Zusammenhang zwischen Ein-/Ausgabe:
- (a) Welche Eigenschaften hat die Ausgabe?
- (b) Wie sehen die Beziehungen der Ausgabe zur Eingabe aus?
- 3. Festlegen der erlaubten Operationen.

formale Spezifikation: Beispiele

Euklidischer Algorithmus

gegeben: $n, m \in \mathbb{N}$ gesucht: $q \in \mathbb{N}$

funktionaler Zusammenhang: g = ggT(n, m)

Jüngste Person

gegeben: $(a_1,\ldots,a_n)\in\mathbb{R}^n, n>0$

gesucht: $p \in \{1, \dots, n\}$

funktionaler Zusammenhang:

• $\forall i \in \{1, ..., n\}$ gilt $a_p < a_i$ oder alternativ:

• $\forall j \in \{1, ..., n\}$ gilt: $a_j \neq a_p \Rightarrow a_j > a_p$.

194

195

Verifikation

Ziel: Beweise, dass der Algorithmus korrekt ist.

Wechselspiel zwischen:

- \bullet statische Aussagen über den Algorithmus ohne ihn auszuführen \to nicht vollständig möglich, zu komplex und umfangreich
- ullet dynamisches Testen des Algorithmus o zeigt nur die Anwesenheit von Fehlern, nicht deren Abwesenheit

Die Programmverifikation versucht zu zeigen, dass der Algorithmus die funktionale Spezifikation erfüllt:

- Der Algorithmus liefert zu jeder Eingabe eine Ausgabe.
- Die Ausgabe ist die gewünschte Ausgabe.

Prädikatenkalkül Floyd/Hoare

die Wirkung eines Programms ist spezifiziert durch zwei Zusicherungen:

- Anfangsbedingung (Vorbedingung, precondition)
 legt vor dem Ablauf des Programms zulässige Werte der Variablen fest
- Endebedingung (Nachbedingung, postcondition)
 legt gewünschte Werte der Variablen und Beziehungen
 zwischen Variablen nach Programmlauf fest
- Notation: $\{P\}$ spezifiziertes Programm $\{Q\}$
- kann eine Spezifikation nicht durch ein Programm erfüllt werden, so nennt man sie widersprüchlich

Prädikatenkalkül Floyd/Hoare (2)

Verifikationsregeln

- ◆ Programme bestehen aus linearen Kontrollstrukturen → die Korrektheit des gesamten Programms ergibt sich aus der Korrektheit der Teilstrukturen
- komplexes Programm durch schrittweises Zusammensetzen einfacher Strukturen verifizieren

Notation: $\{P\}$ Schritt $\{Q\}$

- P = Vorbedingung
- Q = Nachbedingung
- ullet Semantik: falls vor Ausführung des Schrittes P gilt, dann gilt nachher Q

198

Prädikatenkalkül Floyd/Hoare (4)

Zuweisungs-Regel $\{P(v)\}$ $v := t \{P(t)\}$

- ullet Semantik: was vorher für t gilt, gilt nachher für v
- Beispiele:

```
* \{t > 0\} v := t \{t > 0 \land v > 0\}
```

*
$$\{x = 2\}$$
 $x := x + 1$ $\{x = 3\}$

*
$$\{x = 3\}$$
 $v := 2x + 1$ $\{v = 7 \land x = 3\}$

symbolische Ausführung: Der in der Vorbedingung gegebene, anfängliche Wert ist in den zugewiesenen Ausdruck einzusetzen. im Beispiel:

- Vorbed. $x = 2 \Rightarrow \text{Nachbed. } x + 1 = 3$
- Vorbed. $x = 3 \Rightarrow \text{Nachbed. } 2x + 1 = 7$

Prädikatenkalkül Floyd/Hoare (3)

Sequenz-Regel

$$\begin{cases}
\{P\} \ S_1 \ \{Q\} \\
\{Q\} \ S_2 \ \{R\}
\end{cases} \Rightarrow \{P\} \ S_1; S_2 \ \{R\}$$

• Semantik: zwei Programmteile S_1 und S_2 können genau dann zusammengesetzt werden, wenn die Nachbedingung von S_1 gleich der Vorbedingung von S_2 ist

abgekürzte Schreibweise

$$\{P_0\}$$
 Schritt 1 $\{P_1\}$ Schritt 2 $\{P_2\}$... $\{P_{n-1}\}$ Schritt n $\{P_n\}$ oder alternativ: $\{P_0\}$ Algorithmus $\{P_n\}$

ullet Semantik: falls vor Ausführung des Algorithmus P_0 gilt, dann gilt nachher P_n

199

Prädikatenkalkül Floyd/Hoare (5)

Anmerkungen:

• auch andere Richtung möglich:

Nachbedingung ⇒ zugehörige Vorbedingung

in Nachbedingung alle Vorkommen der zugewiesenen Variablen durch zuweisenden Ausdruck ersetzen:

- * Nachbed. $x + 1 = 3 \Rightarrow Vorbed. x = 2$
- * Nachbed. $2x + 1 = 7 \Rightarrow Vorbed. x = 3$
- welche Richtung man wählt, hängt davon ab, ob man die Vor- oder die Nachbedingung kennt

Prädikatenkalkül Floyd/Hoare (6)

Konsequenz-Regel $\{P'\}\ S\ \{Q'\}$ \Rightarrow $\{P\}\ S\ \{Q\}$

- ullet Vorbedingung P ist stärker/schärfer als P'
- ullet Nachbedingung Q ist schwächer als Q'

Beispiel:

202

Prädikatenkalkül Floyd/Hoare (8)

die Sequenz-Regel kann mit Hilfe der Konsequenz-Regel verallgemeinert werden:

zwei Programmteile S_1 und S_2 können zusammengesetzt werden, wenn die Nachbedingung von S_1 schärfer als die Vorbedingung von S_2 ist

$$\{Q\} \ S_1 \ \{P'\}$$

 $\{P'\} \Rightarrow \{P\}$ \Rightarrow $\{Q\} \ S_1; S_2 \ \{R\}$
 $\{P\} \ S_2 \ \{R\}$

Prädikatenkalkül Floyd/Hoare (7)

Konsequenz-Regel (Fortsetzung)

- Bedingungen abschwächen bei Vorwärts-Durchlauf:
 - * hinzufügen eines Terms mit ODER-Verknüpfung
 - * weglassen eines UND-verknüpften Terms
- Bedingungen verschärfen bei Rückwärts-Durchlauf:
 - * hinzufügen eines Terms mit UND-Verknüpfung
 - * weglassen eines ODER-verknüpften Terms

Beispiel:

$$\begin{cases} x < y \ \lor \ x = y \end{cases} \qquad \begin{cases} x < y \} \Rightarrow \{x < y \ \lor \ x = y \} \\ S \qquad \Rightarrow \qquad S \\ \{x = y + 2\} \qquad \qquad \{x = y + 2\} \Rightarrow \{y \le x \}$$

203

Prädikatenkalkül Floyd/Hoare (9)

Wiederholung $\{P\}$ solange B wiederhole Schritt $\{P \land \neg B\}$

- Semantik: P gilt vor und nach jeder Ausführung von Schritt \rightarrow Schleifeninvariante
- Beispiel:

$$x := y$$

$$k := 0$$

$$\{y = k \cdot a + x\}$$
solange $x \ge 0$ wiederhole
$$x := x - a$$

$$k := k + 1$$

$$\{y = k \cdot a + x \land x < 0\}$$

Prädikatenkalkül Floyd/Hoare (10)

Anmerkungen:

- die Invariante gilt nicht an allen Stellen des Schleifenrumpfs, nur am Anfang und am Ende
- ähnliche Regeln existieren für Zählschleifen und fußgesteuerte Schleifen wie do ... while (); (werden hier nicht vorgestellt)

if-Regel

Verifikation: Beispiel

Algorithmus:

$$s := 0$$

 $j := n$
while $j > 0$ do
 $s := s + j$
 $j := j - 1$

Werte für n = 4:

Runde	j	s
0	4	0
1	3	4
2	2	4 + 3 = 7
3	1	4 + 3 + 2 = 9
4	0	4+3+2+1=10

Invariante?

$$s = \sum_{i=j+1}^{n} i$$

206

Verifikation: Beispiel (2)

```
  \{n \in \mathbb{N}_0\}  s := 0  j := n  \{n \in \mathbb{N}_0 \land s = 0 \land j = n \land j \in \mathbb{N}_0 \land s = \sum_{i=j+1}^n i\}  while j > 0 do  \{n \in \mathbb{N}_0 \land j > 0 \land j \in \mathbb{N}_0 \land s = \sum_{i=j+1}^n i = \sum_{i=j}^n i - j\}  alternativ:  \{n \in \mathbb{N}_0 \land j > 0 \land j \in \mathbb{N}_0 \land s + j = \sum_{i=j}^n i\}   s := s + j   \{n \in \mathbb{N}_0 \land j > 0 \land j \in \mathbb{N}_0 \land s = \sum_{i=j}^n i = \sum_{i=j-1+1}^n i\}   j := j - 1   \{n \in \mathbb{N}_0 \land j > 0 \land j \in \mathbb{N}_0 \land s = \sum_{i=j+1}^n i\}   \{n \in \mathbb{N}_0 \land j \leq 0 \land j \in \mathbb{N}_0 \land s = \sum_{i=j+1}^n i\}
```

207