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Abstract

The sentiment scores presented by Dalitz & Bednarek in “Sentiment lexica from paired comparisons” at the
ICDM Sentire workshop (2016) were based on an approximation formula by Elo that was grossly inaccurate
in that particular use case. This corrigendum describes how the scores should be estimated instead and shows
that these new scores are indeed a good fit to the probabilistic sentiment score model. The conclusions in
the Sentire paper about the quality of the corpus based sentiment lexica SentiWS and SenticNet 3 still hold,
however, because the scores obtained with the inaccurate approximation formula are similar to the correctly
estimated scores when scaled with a factor, which means that the correlation is not that much affected by the
error. Nevertheless, the approximate solution presented in the Sentire paper should not be used and be replaced
by a numerical non-linear least squares or maximum likelihood optimization.

1 Introduction

In their presentation at the ICDM Sentire workshop
[1], Dalitz & Bednarek proposed a method to assign
polarity scores to words that represents the strength
of the positive or negative affect associated with each
word. The method uses the paired comparisons, the
theory of which was originally developed in psychol-
ogy [2] and later applied to chess ratings [3, 4]. The
original model ignored the possibility of draws, but
Dalitz & Bednarek used a generalized model that al-
lowed draws, too [5].

Applied to word polarity, the model makes the as-
sumption that each word w; has a hidden rating r;. The
probability that w; is more positive than w; (symboli-
cally: w; > wj) in a randomly chosen context depends
on the difference between the hidden ratings:

P(w; > wj) = F(r; —r; —t) (1a)

P(w; = wj) = F(r; —rj + 1)
—F(ri—rj—1) (1b)

P(w; < wj) = F(rj —r; —t) (1¢)

where (—t,t) is the draw width, and F' is the cumu-
lative distribution function of a zero-symmetric ran-
dom variable. The normal distribution function is the
only choice for F' with a sound statistical justifica-
tion (Thurstone-Mosteller model), but simpler forms
for F' have also been used like the logistic distribution
(Bradley-Terry model) or the uniform distribution [6].

The ratings are the sentiment scores and need to be
estimated from the observed comparison results. To
estimate all scores, we performed a k-fold round-robin
experiment from which the n unknown scores (r;)?_;
were to be estimated (case 2 in [1]). To do so, we fol-
lowed the non-linear least squares estimation method
by Batchelder & Bershed [3], which minimizes the
squared differences between the observed scorings

1
Si = W; +§( D; +_ k) ()
wins draws self

and and their expectation values E/(.S;), which can be
approximated by a Taylor expansion around ¢ = 0 as

E(SZ) = ]{,‘Zn:F(TZ — T‘j) + O(f2) (3)
j=1

The non-linear least squares estimator are the ratings
T1,...,Tn that minimize

n

)= (Si- kzn:F(ri —rj))z )
j=1

SS(Y’l, N

=1

In [1], we had solved Eq. (4) for its minimum analyt-
ically by making the following approximation that is
due to Elo [4, paragraph 1.66]:

n

ZF(rifrj)zn-F(rifF)

=1
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Figure 1: Comparison of Elo’s approximation n - F'(r —
7) (see Eq. (5)) with the true value of ;- | F((r — ;) as
a function of r for evenly spaced r; and a normal distri-
bution F' with o = 1/\/§

where 7 = Z?Zl ri/n is the average rating of all
words. Eq. (5) holds exactly only when F' is the uni-
form distribution and all rating differences are within
the support of the uniform distribution. In all other
cases, the approximation may become inaccurate. As
we will show in this corrigendum, the error is so
large in this use case that the approximation must
not be used and a numeric algorithm for minimizing
SS(ry,...,r,) must be applied instead.

2 Inaccuracy of Elo’s approximation

Let us first check directly how good Elo’s approxima-
tion is in our case. We will see in the next section
that the resulting scores range in our experiment is
about [—2,+2] for a normal distribution function F
with o = 1/+/3. For n = 200 ratings equally spaced
between —2 and +2, the values of the different sides
of Eq. (5) are shown in Fig. 1.

The difference can become greater than 40 which is
an error of 20% of the total possible score 200. This
shows that Elo’s approximation is too crude to be us-
able in our case. It is interesting to note that the true
value is close to a linear function of r and one could
get the idea to use this approximation. The slope of
the line depends on the range of the scores, however,
which is not known beforehand. This means that a lin-
ear approximation of ) " | F(r — ;) cannot be used
either to find the minimum of (4) analytically.

Another way to assess the quality of the approx-
imation (5) is to compare the observed probabilities
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Figure 2: Comparison of the observed relative frequen-
cies with the probabilities predicted by model (1) with
a normal distribution F' and scores computed with Elo’s
approximation.
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Figure 3: Comparison of Elo’s approximation n - F'(r —
7) with the true value of ) ;" | F'(r — r;) for the CEMS
data with the scores reported by Cattelan [5] for the nor-
mal distribution /" and o = 1.

with the probabilities predicted by the model (1) with
the scores obtained from the approximation through
[1, Eq. (9)]. To do so, we have binned all occurring
Ar = r; — rj in our 2-fold round-robin experiment
into 100 bins and counted the relative frequencies of
w; > wj, w; & wj, and w; < wj as estimators for
the respective probabilities. Fig. 2 shows that the pre-
diction is quite poor and that the scores presented at
the Sentire workshop are not the best fit to the model
because the score differences are estimated too small.

This raises the question why Elo’s approxima-
tion worked so well in the case of the CEMS data
[7], where it yielded almost the same results as the
maximum-likelihood estimator. As shown in Fig. 3,
the ratings are so close in this case that all differences
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Figure 4: Comparison of the observed relative frequencies with the probabilities predicted by model (1) with a normal
distribution F' and scores computed by numeric minimization of (4).

fall into a range where the distribution function is al-
most linear. This means that Elo’s approximation in-
cidentally is quite good in this particular case. For our
word sentiment score problem, however, a different es-
timation method must be used.

3 Correct score estimation

For obtaining correct scores, the sum of squares (4)
must be minimized numerically. For non-linear least
squares problems, the Levenberg-Marquardt algorithm
is an efficient algorithm that is, e.g., provided by the R
package minpack.lm [8]. As can be seen in Fig. 4, the
ratings estimated with this method lead to a model in
good agreement with the observed comparison results.

The range of the least squares fitted scores is about
[—2, 2] when o is set to 1/+/3, while the range of the
scores obtained with Elo’s approximation was about
[—1,1]. The draw width ¢ is greater, too (0.220 ver-
sus 0.128). Nevertheless, the Pearson correlation be-
tween both scores is 0.9973, and the Spearman cor-
relation even 1.0000. This means that the scores
from Elo’s approximation are linearly transformed by
a factor around 0.5, which theoretically could be cor-
rected after score estimation by reducing the scale
parameter o in F. This means that the probability
P(“unpraktisch” > “riide”) reported in [1, p. 928] was
too small (0.58) and is actually greater (0.64).

An alternative approach to estimate 7rq,...,7,
would be to maximize the log-likelihood function
Wriy ... rp,t) = Z log F'(r; —r; —t) (6)

comparisons
with w; >w;

+ Z log(F(n-—rj—i—t)—F(Ti_rj_t))

comparisons
with w; =w;

The resulting model fit is similar to Fig. 4, but
with an even slightly wider range of score values:
[—1.955,2.132] versus [—1.832,1.904]. The run-
time for maximum-likelihood estimation is consider-
ably greater', however, and numeric optimization of
(6) fails in the case of the uniform distribution, be-
cause the objective function is not differentiable and
many values of the ratings lead to zero probabilities.
The best fit with non-linear least squares even has
l(ri,...,rn,t) = —oo. For other than the uniform
distribution, the maximum-likelihood estimation is a
good alternative, however, especially as it does not
make the assumption of a small draw width ¢. In our
situation itis ¢ ~ (.2, and the Taylor expansion around
t = 0 is justified, but this might not hold in more gen-
eral use cases of the paired comparison model.

4 Correlation with other lexica

In the presentation for the Sentire workshop, we had
used the scores to evaluate the relative quality of the
corpus based sentiment lexica SentiWS [9] and Sen-
ticNet 3 [10] by means of their Pearson correlation
with the paired comparison scores. Based on these
correlations, we concluded that SenticNet is in bet-
ter agreement with our ground truth data. As can be
seen from Table 1, our conclusion still holds with the

"Numeric minimization of (4) with the R function nls.Im took
12s on an Intel 17-4770, while it took 8min for the maximization
of (6) with optim.
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choice for F'
normal  logistic  uniform
direct 0.977 0.978 0.973
Sentiwvs 0.714 0.715 0.713 LSO
SenticNet | 0.759 0.762 0.751
direct 0.968 0.961 0.979
Sentiwvs 0.709 0.707 0.710 Elo
SenticNet | 0.741 0.732 0.763
Table 1: Pearson correlation 7, of the polarity scores

with scores from direct assignment and corpus-based lex-
ica. “LSQ” are the results with scores correctly estimated
with non-linear least squares. For comparison, the corre-
lations with the erroneously estimated scores from [1] are
given (“Elo”).

correctly estimated scores, although they have a range
about twice as wide. As the correlation between the er-
roneous (Elo) and the correct (LSQ) scores is high, the
difference in their range has less effect on their corre-
lation with other sentiment lexica than one should have
expected from the inaccuracy of Elo’s approximation
in this case.

There is one notable difference, however: for the
correct scores, the uniform distribution no longer
shows the highest correlation with the other lexica. On
the contrary: it is lower, albeit only slightly. More-
over, the plot for the uniform distribution correspond-
ing to Fig. 4 shows a slightly poorer agreement be-
tween model prediction and observed judgments. In
contrary to the suggestion in [1], there is thus no rea-
son to prefer the uniform distribution.

5 Conclusion

The approximation formula for estimating the word
sentiment scores in [1] must not be used. The scores
must instead be computed either by non-linear least
squares minimization of Eq. (4), or by maximizing the
log-likelihood function (6). This also affects the com-
putation of scores for new words, where the estimation
step in lines 20 and 24 of Algorithm 1 [1, p. 927] must
be replaced with a maximum likelihood or non-linear
least squares estimate.

A more general lesson can be learned from this ex-
ample: always verify the approximations made in a
model after fitting the model to the observed data! 1
am sorry that we did not do this before our Sentire
presentation and that this corrigendum was necessary.

[1]

(2]

[10]
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Abstract—The method of paired comparison is an established
method in psychology for assigning ranks or inherent score
values to different stimuli. This article describes how this method
can be used for building a sentiment lexicon and for extending
the lexicon with arbitrary new words. An initial lexicon with
n = 200 German words is created from a two-fold all-pair
comparison experiment with ten different test persons. A cross-
validation experiment suggests that only two-fold log,(n)+8 = 16
comparisons are necessary to estimate the score of a new, yet
unknown word. We make the new lexicon available and compare
it with the corpus-based lexica SentiWS and SenticNet.

I. INTRODUCTION

A sentiment lexicon is a dictionary that assigns each term
a polarity score representing the strength of the positive or
negative affect associated with the term. In general, word
polarity strength depends on the context, and its represen-
tation by a single number can therefore only be a crude
approximation. Nevertheless, such sentiment lexica are an
important tool for opinion mining and have been proven to be
very useful. Examples for recent use cases are the sentiment
analysis of tweets and SMS [1] or the political classification
of newspapers [2].

There are two approaches to building a sentiment lexicon:
corpus based automatic assignment or manual annotation.
Corpus based approaches start with a set of seed words of
known polarity and extend this set with other words occurring
in a text corpus or a synonym lexicon. One possible approach
is to compute the “Pointwise Mutual Information” (PMI)
[3] from cooccurrences of seed words and other words. The
German sentiment lexicon SentiWS [4] was built in this way.
A more sophisticated corpus-based method was implemented
for SenticNet [5], [6]. Such methods can even be extended to
automatically assign emotion categories to terms [7].

Corpus based methods have the advantage of building large
lexica in an automated way without time consuming exper-
iments with human annotators. They have two drawbacks,
however: due to peculiarities in the corpus, some words
can obtain strange scores. In SentiWS 1.8, e.g., “gelungen”
(successful) has the highest positive score (1.0) while the more
positive word “fantastisch” (fantastic) only has a score of
0.332. In SenticNet 3.0, “inconsequent” has a strong positive
polarity (0.948). Moreover, it is not possible to assign a score
value to words that are absent from the corpus.

Assigning polarity scores by manual annotations can be
done in two different ways. One is by direct assignment of
an ordinal score to each word on a coarse scale. In this

way, Wilson et al. have created a subjectivity lexicon with
English words [8], which has also been used by means of
automated translations for sentiment analysis of German texts
[9]. The other method is to present words in pairs and let the
observer decide which word is more positive or more negative.
Comparative studies for other use cases have shown that
scores from paired comparisons are more accurate than direct
assignments of scores [10]. The main advantage is their in-
variance to scale variances between different test persons. This
is especially important when words are added at some later
point when the original test persons are no longer available.
Unfortunately, paired comparisons are much more expensive
than direct assignments: for n words, direct assignments only
require O(n) judgments, while a complete comparison of all
pairs requires O(n?) judgments. For large n, this becomes
prohibitive and must be replaced by incomplete comparisons,
i.e. by omitting pairs. Incomplete paired comparisons are
widely deployed in the estimation of chess players’ strength
[11], [12].

In the present paper, we propose a method for building a
sentiment lexicon from paired comparisons in two steps. At
first, an initial lexicon is built from a limited set of 200 words
by comparison of all pairs. This lexicon is then subsequently
extended with new words, which are only compared to a lim-
ited number of words from the initial set, which are determined
based on Silverstein & Farrell’s sorting method [13]. Sec. II
provides an overview over the mathematical methods of the
method of paired comparisons, Sec. III describes the criteria
for choosing the initial set of words and our experimental
setup, and Sec. IV presents the results for the initial lexicon,
compares it to SentiWS and SenticNet, and evaluates a method
for adding new words. The new lexicon will be made available
on the authors’ website.

II. METHOD OF PAIRED COMPARISON

The method of paired comparison goes back to the early
20th century [14]. See [12] for a comprehensive presentation
of the model and its estimation problems, and [15] for a review
of recent extensions. Applied to word polarity, it makes the
assumption that each word w; has a hidden score (or rating) ;.
The probability that w; is more positive than w; (symbolically:
w; > wj) in a randomly chosen context depends on the
difference between the hidden scores:
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Fig. 1. Different choices for the cumulative distribution function F' with
identical standard deviations o = 1/ V3.
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where (—t,t) is the draw width, and F' is the cumulative
distribution function of a zero-symmetric random variable.
Thurstone’s model [14] uses an F' based on the normal
distribution, a model that can be derived from the assumption
that the polarity of a word w; is normally distributed around its
mean inherent score r;. Although this is the only model with
a sound statistical justification, simpler distribution functions
have also been used for convenience, e.g. the logistic distribu-
tion (Bradley-Terry model) or the uniform distribution, which
is the only one which strictly limits the range of the rating
differences r; — r; (see Fig. 1). The standard deviation o of
the distribution function is a scale parameter that determines
the range of the ratings r;.

As the probabilities in Eq. (1) only depend on rating
differences, the origin » = (0 cannot be determined from
the model, but must be defined by an external constraint.
Typical choices are the average rating constraint ), r; = 0,
or the reference object constraint, i.e. r; = 0 for some 3.
For sentiment lexica, a natural constraint can be obtained by
separately classifying words into positive and negative words
and choosing the origin in such a way that the scores from the
paired comparison model coincide with these classifications.

The ratings r; and the draw-width ¢ must be estimated from
the observed comparisons. During our two steps of building a
sentiment lexicon, two different estimation problems occur:

1) Estimation of one unknown r of a new word from
m comparisons with old words with known ratings
4is- -5 4m-

2) Estimation of ¢ and all unknown ry ..., r, from round-
robin pair comparisons.

Estimators with desirable properties are generally obtained
from maximizing the (log) likelihood function, which can
only be done numerically in the above cases. Alternatively,
approximate analytic formulas for estimating the parameters

can be obtained with the “generalized method of moments” as
outlined in the following two subsections.

A. Case 1: one unknown rating r

Let us first consider this simpler case. The idea of the
generalized method of moments is to set the measured value
of an observable equal to its expectation value and solve
the resulting equation for the parameters. Following [12], we
choose as an observable a combination of the number of wins
W of the new word and the number of draws D, which we
set equal to its expectation values

W:ZF(r—qi—t)

(2a)
i=1
D=3 (Fr-g+t)~Fr—a-1)) @b
=1

For small ¢, we can make a Taylor expansion of the right
hand sides of Eq. (2) around ¢ = 0, and, for the combination
W + D/2, the term linear in ¢ vanishes:

W+D/2~> F(r—q) 3)
i=1
With Elo’s approximation' > 7" F(r — ¢;) & m - F(r — q)
[11], this can be solved for r in closed form:

m

W + D)2 1
rzq+F_1(7—:n /) with 7= —3"q; 4
=1

An alternative solution can be obtained by numerically max-
imizing the log-likelihood function I(r) (¢ is considered as
given):

I(r)=> log F(r—g; —t) (5)

wins

+Zlog(F(r—qH—t)—F(r—qi—t))

draws

+ Y logF(gi—r—1)

losses
B. Case 2: all ratings (r;)?_, and t unknown

Again, we obtain an approximate estimator with the gener-
alized method of moments by considering for each word w;
the total score S; from k-fold round-robin comparisons as an
observable

1
S;= W; +=( D; k 6
+5 (D + lf) (6)
wins draws se

and setting it equal to its expectation value. With a Taylor
approximation around ¢ = 0 and Elo’s approximation, we
obtain

Si%k‘ZF(ri—rj)%knF(ri—F) @)
j=1

IThis holds exactly for the uniform distribution, but is only a crude
approximation for the Thurstone or Bradley-Terry model.
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Fig. 2. Graphical user interface for score assignment as seen by the test persons.

where 7 = . 7;/n is the average rating of all words. Joint
estimates for all ratings can then be obtained by minimizing
the sum of the squared deviations
n 2
SS(rl,...,rn):Z(Si—k‘nF(m—F)> 8)
i=1
The minimum of expression (8) can be given in closed form
because (8) is exactly zero for (note that 7 can be chosen
arbitrarily, as explained in section II):

1 n
Ty =T+ (Si/kn) wi T - jg 1 T C))

To obtain an approximate estimator for the draw width ¢, let
us consider the total number of draws D; of each word w;
as an observable and set it equal to its expectation value in a
k-fold round robin experiment:

Di:k‘Z(F(Ti—Tj—f—t)—F(T‘i—Tj —t))
J#i
Keeping only the first non-zero term in a Taylor expansion
around ¢ = 0 of the sum on the right hand side yields

Z (F(ri—rj—l—t)—F(ri—rj—t)) = 2tZF’(ri—rj) (11
J#i J#i
Again, we can determine ¢ by minimizing the sum of the
squared deviations

(10)

2
n

SS(t)y=> | Di- thiF'(ri — ;)

i=1 j#i

12)

The minimum of expression (12) can be found analytically by
solving for the zero of S.S’(t), which yields

>y fiDi/2 )
tzw Wlth fiszF/(Ti—Tj)
=171 ji

The approximate solution (9) and (13) can then be used as a
starting point for maximizing the log-likelihood function

l(’l"l,.. Z

comparisons
with w; >w;

+ Z log (F(TZ —rj+t)—F(r;—rj — t))

comparisons
with w; Rw;

(13)

ST, t) = log F(r; —r; —t) (14)

It should be noted that, due to the large number of n + 1
parameters, numerical methods for maximizing (14) might not
work reliably. In this case, the approximate solution (9) and
(13) should be used.

III. EXPERIMENTAL DESIGN

To select 200 words for building the initial lexicon from
round robin pair comparisons, we have started with all 1498
adjectives from SentiWS [4]. To build an intersection of
these words with SenticNet [5], we translated all words into
English with both of the German-English dictionaries from
www.dict.cc and www.freedict.org, and removed all words
without a match in SenticNet. From the remaining 1303
words, we selected manually 10 words that appeared strongly
positive to us, and 10 strongly negative words. This was to
make sure that the polarity range is sufficiently wide in the
initial lexicon. The remaining words were ranked by their
SentiWS score and selected with equidistant ranks, such that
we obtained 200 words, with an equal number of positive and
negative words according to SentiWsS.

We then let ten different test persons assign polarity scores
to these words in two different experiments. The first one
consisted of direct assignment of scores on a five degree scale
(see Fig. 2(a)), which resulted in ten evaluations for each word.
An average score was computed for each word by replacing
the ordinal scale with a metric value (—1 = strong negative,
—0.5 = weak negative, 0 = neutral, 0.5 = weak positive, 1.0
= strong positive).

The second experiment consisted of twofold round robin
paired comparisons, with all 2-19 900 pairs evenly distributed
among the ten test persons, such that each person evaluated
3980 pairs. See Fig. 2(b) for the graphical user interface pre-
sented to the test persons. The scores were computed with the
method-of-moments solution from section II-B. The standard
deviation of the normal distribution was set to 0 = 1/ V3,
which corresponds to the distribution function in Fig. 1. For
a reasonable choice for the origin » = 0, we shifted all scores
such that they best fitted to the discrimination between positive
and negative words from the direct comparison experiment. To
be precise: when 7 is the score from the direct assignment and
r; the score from the paired comparisons with an arbitrarily set
origin, we chose the shift value p that minimized the squared

SE() = 3 (p+m)?

sign(p-+r;)#sign(r!)

5)



Algorithm 1 One-fold addition of new word
Input: word w with unknown rating r, words
U = (v1,...,vy,) sorted by their known ratings ¢1, ..., g,
Output: new rating r
i< land i, <+ n
i (i +ir)/2]
mg < 0
7

—

while 7 > 7; and 7 < 7,- do
mo < mg+ 1
7+ qUq
s « score from w versus v; comparison,

where win counts 1 and draw counts 1/2

S+ S+s

12 U<+ U\ v;

13: if s > 1/2 then

> binary search

R e A A
S
<

—_—
- O

14: i 1
15:  else

16: Ty 1
17:  end if

18: i< | (i +1ir)/2]

19: end while

20: 1o < mean(q) + F~1(S/mp)

21: 4 < m words in ¥ with closest ratings to ¢
22: @ 4 ¢ U ratings of ¥

23: S < S+ total score of w against words from o

24: r < mean(q) + F~1(S/(mg +m)) > cf. Eq. (4)
25: return r

> first guess

For adding new words, we implemented the method by
Silverstein & Farrell, which uses comparison results to sort
the new word into a binary sort tree built from the initial
words [13]. For n initial words, this only leads to log,(n)
comparisons, which generally are too few for computing a
reliable score. We therefore extended this method by adding
comparisons with the m words from the initial set which
have the closest rank to the rank obtained from the sort tree
process. Algorithm 1 lists the resulting algorithm in detail.
This algorithm can be applied sequentially to more than
one test person by estimating the resulting rating from all
scores obtained from all test persons with Eq. (4). We have
evaluated this method with a leave-one-out experiment using
the comparisons from our two-fold round-robin comparison
experiment.

IV. RESULTS
A. Score values

It turned out that all maximization algorithms provided by
the R-package optimx failed to maximize the log-likelihood
function (14). We therefore used the approximate solution
given by (9) and (13). To get an idea of the difference
between both solutions, we compared them for a well-studied
much smaller paired-comparison experiment, the student pref-
erence data for the Community of European Management

212 round-robin all 303

MM/Elo ML ML

school T OJK T OJK T
London 0.555 0.038 0.632  0.046 0.588
Paris 0.177  0.045 0.193  0.050 0.156
Barcelona -0.047  0.042 | -0.064 0.046 -0.078
St.Gallen -0.120  0.046 | -0.121  0.051 -0.086
Milano -0.147  0.041 | -0.176  0.045 -0.169
Stockholm | -0.417 0.039 | -0.465 0.044 -0.410
t 0.162  0.016 0.166  0.016 0.153

TABLE I

CEMS PREFERENCE SCORES FROM METHOD-OF-MOMENTS (MM/ELO)
AND MAXIMUM-LIKELIHOOD (ML).

Schools (CEMS) [16]. The data is available in the R Package
BradleyTerry2> and was also used as an example in the
review by Cattelan [15]. Theoretically, it should include all-
pair preference choices between six management schools made
by 303 students, but as 91 students missed answering some
questions, it actually only includes 212 students performing a
full round-robin comparison. This means that we effectively
only have a 212-fold round-robin experiment.

We have computed the rating estimators from these 212
students both with the approximate method-of-moments and
maximum-likelihood, and estimated the standard error with
the jackknife variance o2, [17] by cyclic omission of one
student. All ratings were normalized to zero mean, and F' was
chosen as a standard normal distribution®. The results are listed
in Table I together with the maximum-likelihood estimators
obtained from all 303 students including those students with
missing answers in the last column. The difference between
the different estimators is smaller than the estimated standard
error in most cases, with the method-of-moments estimator
surprisingly even closer on average to the estimator in the last
column. We therefore conclude that the approximate method-
of-moments estimators works well for estimating ratings from
round-robin comparisons.

For the 200 words, we estimated the polarity ratings with the
approximate method-of-moments with the three distribution
functions of Fig. 1. The draw width ¢ turned out to be 0.128
for the normal distribution, 0.119 for the logistic distribution,
and 0.146 for the uniform distribution. Fig. 3 shows a kernel
density plot [18] for the resulting score distributions. The
valley around zero (neutrality) is due to the fact that the
words were drawn from the SentiWS data which only contains
positive or negative words. The comparative shapes are as
expected from Fig. 1: the steeper the slope of the distribution
F(z) at x = 0, the more condensed are the resulting scores.

It is interesting to compare the scores from paired compar-
isons for words which have obtained the same score from di-
rect assignment on the five grade scale. The examples in table
II show that the paired comparisons indeed lead to a different
and finer rating scheme than averaging over coarse polarity

Zhttp://cran.r-project.org/package=BradleyTerry2

3The choice o = 1 was made for compatibility with the results reported
by Cattelan in [15], which are identical to the last column in Table I when
normalized to zero mean instead of zero minimum.
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Fig. 3. Kernel density plot of the polarity score distribution in our sentiment

lexicon for different cumulative distribution functions F'.

adjective Tdirect | Tpaired T JIK
paradiesisch (paradisaical) 1.00 0.872  0.074
wunderbar (wonderful) 1.00 0.816  0.071
perfekt (perfect) 0.95 1.001  0.086
traumhaft (dreamlike) 0.95 0.955 0.081
prima (great) 0.75 0.684  0.063
zufrieden (contented) 0.75 0.495 0.055
kinderleicht (childishly simple) 0.50 0.348  0.051
lebensfihig (viable) 0.50 0.249  0.048
ausgeweitet (expanded) 0.05 -0.008  0.046
verbindlich (binding) 0.00 0.091  0.039
kontrovers (controversial) -0.05 -0.175  0.047
unpraktisch (unpractical) -0.50 | -0.279  0.046
riide (uncouth) -0.50 -0.517  0.052
falsch (wrong) -0.75 -0.515  0.055
unbarmherzig (merciless) -0.75 -0.688  0.055
erbarmlich (wretched) -1.00 | -0.728  0.055
todlich (deadly) -1.00 | -1.028 0.062
TABLE 1T

EXAMPLE SCORES FROM AVERAGE DIRECT ASSIGNMENT AND PAIRED
COMPARISONS WITH THE NORMAL DISTRIBUTION.

scores from direct assignments, and that they also can lead to a
reversed rank order (see, e.g., “traumhaft” and “wunderbar”).
We have also estimated the variances of the polarity score
estimates as the jackknife variance o2, via cyclic omission
of one word. These can be used to test whether, for r; > r;,
the score difference is significant by computing the p-value
1 —®((r; —7r;)/\/of +07), where ® is the distribution
function of the standard normal distribution. For the words
“unpraktisch” and “riide”, e.g., the p-value is 0.0003, which is
smaller than 5% and the difference is therefore statistically sig-
nificant. The probability that “unpraktisch” is considered less
negative than “riide” is F'(—0.279—(—0.517)—0.128) = 0.58.

B. Adding new words

To obtain a lower bound for the error in estimating scores
for unknown words, we have first computed the scores for
all words with the estimators for one unknown rating 7 as
described in section II-A, where each word was compared
with all other words and the scores ¢; for other words were
considered to be known from the results in the preceding

error

0.05
|

\ \ \ \ \
0 50 100 150 200

number of neighbors

Fig. 4. Mean absolute error (MAE) from leave-one-out as a function of the
number of additional comparisons after Silverstein & Farrell’s method.

section. The mean absolute error with respect to the known
score was much higher for the maximum-likelihood estimator
(0.1444) than for method-of-moments estimator (0.008). This
does not necessarily mean that the method-of-moments esti-
mator is better, but it may be due to the fact that the “ground
truth score” was also computed with the method-of-moments
based on a similar observable. We therefore have used the
method-of-moments estimator in the subsequent evaluations.

For a reasonable recommendation for the number of in-
complete comparisons, we have varied the number m of
neighboring scores after sorting in the unknown word with
Silverstein & Farrell’s method (see section III). The results
are shown in Fig. 4. It is interesting to observe that adding
comparisons with similar scores first improves the accuracy,
but leads to slight deterioration when too many similar words
are added. The local minimum in Fig. 4 occurs at m = 8 with
a mean absolute error of 0.0582. This effect deserves further
investigation. A possible explanation for this behavior could
be that we only had two results for each comparison, which are
not sufficiently representative for comparisons of words with
similar scores. Nevertheless, adding similar words after a first
guess based on Silverstein & Farrel’s method leads to a smaller
error than choosing comparison words at random: in a 100-
fold Monte-Carlo experiment with choosing log,(n)+m = 16
words at random, we obtained a mean absolute error of 0.0840.

It should be noted that the error of 0.0582 is close to the
standard deviations for the scores given in Table II and is about
half the draw width. We therefore conclude that incomplete
comparisons with only 16 out of 200 words provides a
reasonably accurate score estimate, provided the words are
selected with our method.



choice for F
normal

logistic uniform
direct rp =0.968 1, =0.961 7, =0.979
SentiWs rp =0.709 1, =0.707 7, =0.710
SenticNet | rp = 0.741 1, =0.732 rp, =0.763
TABLE III

PEARSON CORRELATION Tp OF THE PARITY SCORES FROM THE PAIRED
COMPARISON WITH THAT OF DIRECT ASSIGNMENT AND CORPUS-BASED
METHODS.

C. Comparison to corpus-based lexica

The polarity scores computed in our experiments provide
nice ground truth data for the evaluation of corpus-based
polarity scores. We therefore compared the scores from Sen-
tiWwS 1.8 and SenticNet 3.0 with the scores computed from
test person answers. SenticNet only contains English words,
from which we have computed scores for the German words
by translating each German word with both of the German-
English dictionaries from www.dict.cc and www.freedict.org
and by averaging the corresponding scores.

A natural measure for the closeness between lists of polarity
scores is Pearson’s correlation coefficient r,, which has the
advantage that it is invariant both under scale and translation
of the variables. This is crucial in our case, because score
values from paired comparisons allow for arbitrary shift and
scale as explained in section II. 7, is highest for a linear
relationship and smaller for other monotonous relationships.
As can be seen in Table III, this means that its value depends
on the shape of the model distribution function F'. Whatever
function is used, the correlation between the scores from direct
assignment and paired comparison is very strong. This was to
be expected, because both values stem from test persons.

The correlation with the paired scores is higher for Sentic-
Net than for SentiWS. According to the significance tests in
the R package cocor [19], this difference is not significant,
however, on a 5% significance level. From the density plot in
Fig. 5 and the scatter plots in Fig. 6, it is nevertheless easily
understandable that SenticNet is slightly stronger correlated
to the true polarity scores than SentiWS. As can be seen in
Fig. 6, SentiWS has many identical scores with values 0.0040
and —0.0048. This peculiar distribution of the SentiWS scores
was also observed in the original paper presenting the SentiW'S
data set by Remus et al. (see Fig. 1 in [4]). The identical
scores show up in Fig. 5 as a peak around neutrality, which
corresponds to a valley (sic!) in the score distribution from
paired comparisons. They do not have such a strong effect on
the correlation coefficient r;,, because the identical values also
lead to a lower standard deviation (0.32 for SentiWS versus
0.44 for SenticNet), which is part of the denominator of 7.
Based on these observations, we consider the polarity scores
from SenticNet (via automatic translation) more reliable than
the scores from SentiWS.

V. CONCLUSIONS

The new sentiment lexicon from paired comparison is a
useful resource that can be used for different aims. It can
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Fig. 6. Scatter plots comparing corpus-based scores with scores from paired
comparisons.

be used, e.g., as ground truth data for testing and comparing
automatic corpus-based methods for building sentiment lexica,
as we did in section IV-C. Or it can be used as a starting point
for building specialized lexica for polarity studies. The method
for adding new words makes the method of paired comparison
applicable to studies with an arbitrary vocabulary because it
yields accurate polarity scores even for rare words.

Although the new sentiment lexicon is ready to be used,
there are still two points in the method of paired comparison
that require further research. One is the development of
a robust numerical maximum-likelihood estimator that also
works in the presence of draws and in the case of a large
number of parameters. The other one is an explanation of the
local minimum in Fig. 4: is this a general effect of our method
for choosing words for comparison, or is it a peculiarity in our
data?

The ratings presented in Table II have been calculated
with the Thurstone model, which is the only model with a
sound statistical justification. It might nevertheless be attrac-
tive in practice to use the uniform distribution, because it
has a stronger correlation both with the scores from direct
assignment and with the scores from SentiWS and SenticNet.
Moreover it restricts the polarity scores to a limited range even
in the presence of strongly positive or strongly negative words.
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