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Abstract

We study the following multi-objective combinatorial stack-up problem from de-

livery industry. Given a sequence q of labeled bins and two positive integers s and

p. The aim is to stack-up the bins by iteratively removing one of the �rst s bins of

the sequence and put it to one of the p stack-up places. Each of these places has to

contain bins of only one label, bins of di�erent labels have to be placed on di�erent

places. If all bins of a label are removed from q, the corresponding place becomes

available for bins of another label.

We analyze the worst-case performance of simple algorithms for the stack-up

problem that are very interesting from a practical point of view. In particular, we

show that the so-called Most-Frequently on-line algorithm is (2; 2)-competitive and

has optimal worst-case on-line performance.

Key words on-line algorithms, competitive analysis, complexity, approximation,

control

1 Introduction

We consider the combinatorial problem of stacking up bins from a conveyor onto pallets.

This problem originally appears in stack-up systems that play, especially in recent years,

an important role at delivery industry and warehouses. The stack-up problem is, for

example, strongly involved with the picking procedure at order-picking systems, which is a

preceding working process immediately before the bins have to be stacked up. To explain

more precisely the practical background of our research, let us �rst say some words about

pick-to-belt order-picking systems.

At delivery industry, customers usually order a large amount of articles. These articles

have to be packed into bins for delivery which is usually done by human workers, see

[1, 3, 8, 12] for more details. Each order consists, in general, of several bins, because the

articles ordered by a customer usually do not �t into a single bin. In the order-picking

�
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system, the articles are picked from shelves and put into the bins. The initially empty

bins enter the order-picking system order by order, but during the packing process the

bins are mixed up between di�erent orders. This rearrangement of the bins can not be

avoided, because each bin has its own packing time that can not be estimated in advance.

Additionally, the availability of all articles is not guaranteed each time. However, for

delivery reasons, it is absolutely necessary to place all bins belonging to one costumer

order onto the same pallet. Therefore, some bins have to be temporarily stored before they

are moved onto pallets.

Bins arrive the stack-up system on the main conveyor of the order-picking system.

At the end of the main conveyor they enter a cyclic storage conveyor. From the storage

conveyor the bins are pushed out to bu�er conveyors, where they are queued. The bins

are picked-up by stacker cranes from the end of a bu�er conveyor and moved onto pallets,

which are located at some stack-up places. There is one bu�er conveyor for each stack-up

place. Automatic driven vehicles take full pallets from stack-up places, put them onto

trucks and bring new empty pallets to the stack-up places, see also [12].

Many details of the architecture are unimportant to compute e�ciently an order in

which the bins can be palletized. We model the bu�er and cyclic storage conveyors by

one simple random access storage from which the bins can be picked-up and moved onto

pallets. In real live, both conveyors are necessary to enable a smooth stack-up process

irrespective of the real speed the cranes and conveyors are moving. Logistic experiences

over 10 years lead to such high exible conveyor systems at delivery industry. So we do not

intend to modify the architecture of existing systems, but try to develop e�cient algorithms

to control them. Figure 1.1 shows a sketch of a simpli�ed stack-up system.

P1 P2 P3 P4 P5 P6

storage

stack−up places

Figure 1.1: A sketch of a stack-up system.

Our aim in controlling stack-up systems is to avoid blocking situations. The system is

blocked, if all stack-up places are occupied, and the storage is completely �lled with bins

not destined for the pallets on the stack-up places. To unblock the system, the missing

bins have to be picked-up manually and moved to pallets by human workers.

Our model is the �rst attempt to capture important parameters necessary for an e�-

cient and provable good algorithmic controlling of stack-up systems. The stack-up system

that has initiated our research is located at Bertelsmann Distribution GmbH in G�utersloh,

Germany. On certain days, several thousands of bins are stacked-up using a storage con-
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veyor with a capacity of approximately 60 bins and 24 stack-up places, while approximately

32 bins are destined for any pallet.

From a theoretical point of view, we are given a sequence of bins q = (b

1

; : : : ; b

n

) and

two integers s and p. Each bin b

i

of sequence q is destined for exactly one pallet. The bins

have to be removed step by step from the �rst s positions such that at each intermediate

step at most p pallets are open. A pallet t is called open, if not all but at least one bin

for t is already removed from q. If a bin is removed then all bins to the right are shifted

one position to the left. Integer s represents the capacity of the storage conveyor from

which the bins can be picked up by the stacker cranes. Integer p represents the number

of available stack-up places. A sequence q is called (s; p)-sequence, if it can be processed

with a storage capacity of s bins and p stack-up places.

Given a sequence of bins q, the aim is to compute a processing of q minimizing si-

multaneously the used storage capacity s and the used number of stack-up places p. We

distinguish between two optimization problems: minimizing the storage capacity s subject

to a constraint on the number of stack-up places p, or minimizing the number of stack-up

places p subject to a constraint on the storage capacity s. In real-world applications it

is quite usual that more than one objective has to be minimized. Many approximation

algorithms for several problems with multiple objectives can be found in literature, see for

example in [6, 9, 14].

In this paper, we consider algorithms where a sequence of bins q and a storage capacity

s is given to the input, while a number of stack-up places p and an (s; p)-processing of

q is computed by the algorithm. We are basically interested in on-line algorithms that

compute almost all decisions at a time where only a part of the complete sequence of bins

is known. At each step, on-line algorithms only see the �rst s bins of the sequence and

they know whether any bin they see is the last one for its destination.

We study the following two questions. Given a sequence of bins q and a storage capacity

s, how many stack-up places p

A

(q; s) are used by algorithm A to process q with respect to

storage capacity s, or given a sequence of bins q and a number of stack-up places p, how

large has to be the storage capacity s

A

(q; p) such that the processing of q by algorithm A

takes at most p stack-up places? Algorithm A is called an (c; d)-approximation algorithm

if we have p

A

(q; c � s) � d � p or s

A

(q; d � p) � c � s, respectively, for each (s; p)-sequence q.

The combinatorial stack-up problem seems to be not investigated by other authors up

to now although it has important practical applications. However, the following facts are

already known. In [12] it is shown that the stack-up decision problem is NP-complete [5],

but can be solved e�ciently if the storage capacity s or the number of stack-up places p is

�xed. In [10] a polynomial time o�-line approximation algorithm is introduced that yields

a processing of any (s; p)-sequence with a storage capacity of s � dlog

2

(p+ 1)+ 1e bins and

p+ 1 stack-up places.

In this paper, we study the worst-case performance of simple stack-up algorithms that

do not know the complete sequence of bins in advance. The worst-case study is done by

competitive analysis [2, 4, 7], that is, we compare the performance of our algorithms with

optimal o�-line solutions. We prove that (o�-line) stack-up algorithms use at most s�1+p
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stack-up places to process (s; p)-sequences with respect to storage capacity s. Similarly,

to process an (s; p)-sequence q with respect to p stack-up places a storage capacity of

s+ p(f

q

� 2) + 1 bins is always su�cient, where f

q

denotes the maximum number of bins

per pallet in sequence q.

We show that the Most-Frequently algorithm { or MF algorithm for short { takes at

most p + p � log

2

(s + 1) + 1 stack-up places to process an (s; p)-sequence with respect to

a storage capacity of s bins. Moreover, the Most-Frequently algorithm needs at most a

storage capacity of (p+ 1)s� p bins to compute a processing for each (s; p)-sequence with

at most p stack-up places. Furthermore, we prove that the Most-Frequently algorithm is

a (2,2)-approximation algorithm and is therefore the best polynomial time algorithm for

the stack-up problem known up to now that approximates both objectives within a certain

small factor.

We also show that the Most-Frequently algorithm has optimal on-line worst-case perfor-

mance. More precisely, we show that for each on-line algorithmA there is an (s; p)-sequence

q such that for all (s; p)-sequences q

0

it holds p

A

(q; s

0

) � p

MF

(q; s

0

) � 1, where s

0

denotes

some integer greater than or equal to s. To prove this, we �rst give a lower bound on the

number of stack-up places each on-line algorithm takes. That is, for given integers s, p, and

s

0

� s, we de�ne step by step an (s; p)-sequence by playing the role of an adversary who

de�nes the next part of the sequence depending on the on-line algorithm's choice. Second,

we prove an upper bound on the number of stack-up places the Most-Frequently algorithm

takes. More precisely, we show that for any given integer c � 0, the Most-Frequently

algorithm takes at most p + p � log

2

(

s

c+1

+ 1) + 1 stack-up places to process each (s; p)-

sequence with respect to storage capacity s+ c. It is, in general, not surprising to obtain a

polynomial time algorithm approximating both objectives within a small factor although

no such algorithm is known for approximating one objective, but it is quite unusual that

such a provable good performance can be achieved by a simple on-line algorithm.

The paper is organized as follows. In section 2, we introduce the preliminary notations

for processing sequences of bins. We consider some stack-up strategies and we de�ne the

stack-up algorithms First-In, First-Done, Most-Frequently and Greedy. In section 3, we

prove upper bounds for general stack-up algorithms, and in section 4 we prove upper bounds

for our algorithms. In section 5, we prove lower bounds of on-line stack-up algorithms and

compare them with the upper bounds of the Most-Frequently algorithm. Finally, some

concluding remarks are given.
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