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Abstract

We consider the combinatorial stack-up problem motivated by stacking up bins

from a conveyor onto pallets. The stack-up problem is to decide whether a given

list q of labeled objects can be processed by removing step by step one of the �rst

s objects of q so that the following holds. After each removal there are at most p

labels for which the �rst object is already removed from q and the last object is still

contained in q. We give some NP-completeness results and we introduce and analyze

a polynomial time approximation algorithm for the stack-up problem.

Key words approximability, discrete algorithms, problem complexity, computa-

tional analysis

1 Introduction

Let us �rst motivate our research on stack-up systems. The problem of stacking up bins

from a conveyor onto pallets basically appears in so-called stack-up systems which play

an important role at delivery industry and warehouses. The customers are companies

that order a large amount of articles. The articles have to be put into bins for delivery

which is usually done by human workers in so-called pick-to-belt order-picking systems, see

[4, 17] for more details. In general, each order consists of several bins. During the packing

process the bins are mixed up between di�erent orders. However, for delivery reasons, it is

absolutely necessary to place all bins belonging to one costumer order onto the same pallet.

Therefore, some bins are temporarily stored before they are moved onto their pallets.

In practice, the bins arrive the stack-up system on a conveyor from an order-picking

system. At the end of the conveyor they enter a cyclic storage system, where they are

moving around in a cycle. From the storage the bins are pushed out into bu�ers, where

they are queued. From the end of the bu�ers the bins are picked-up by stacker cranes and

�

A short abstract of section 5 is already published in the proceedings of WADS '97 [15].
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moved onto pallets, which are located at so-called stack-up places. There is one bu�er for

each stack-up place. Automatic driven vehicles take full pallets from stack-up places, put

them onto trucks, and bring new empty pallets to the stack-up places, see also [17].

Many details of the architecture are unimportant to compute e�ciently an order in

which the bins can be palletized using the available number of pallets. We model the

bu�ers and the cyclic storage system by one random access storage region from which the

bins can be picked-up and moved onto pallets. In real live, the bu�ers and the cyclic

storage system are necessary to enable a smooth stack-up process irrespective of the real

speed the cranes and conveyors are moving. Logistic experiences over 10 years lead to such

high 
exible conveyor systems in delivery industry. So we do not intend to modify the

architecture of existing systems, but we try to develop e�cient algorithms to control them.

Figure 1.1 shows a sketch of a simpli�ed stack-up system.
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Figure 1.1: A sketch of a simpli�ed stack-up system.

Our aim in controlling stack-up systems is to avoid blocking situations. The system is

blocked, if all stack-up places are occupied, and the storage region is completely �lled with

bins not destined for the pallets on the stack-up places. To unblock the system, bins have

to be picked-up manually and brought to pallets by human workers.

Our model is the �rst attempt to develop discrete algorithms and to capture important

parameters necessary for an e�cient and provable good controlling of stack-up systems.

The stack-up system that has initiated our research is located at Bertelsmann Distribution

GmbH in G�utersloh, Germany. On certain days, several thousands of bins are stacked-up

using a storage conveyor with a capacity of approximately 60 bins, and 24 stack-up places,

while at most 32 bins are destined for each pallet.

From a theoretical point of view, we are given a sequence of bins q = (b

1

; : : : ; b

n

), and

two integers s and p. Each bin b

i

of sequence q is destined for exactly one pallet. The bins

have to be removed step by step from the �rst s positions, such that after each removal at

most p pallets are open. A pallet is called open, if not all but at least one bin for the pallet

is already removed from q. If a bin is removed then all bins to the right are shifted one

position to the left. Integer s represents the capacity of the storage region from which the

bins can be picked-up by the stacker cranes. Integer p represents the number of available

stack-up places. A sequence q is called an (s; p)-sequence if it can be processed with a

storage capacity of s bins and p stack-up places.
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In recent years, scheduling of order-picking systems has received much attention [2, 8,

13]. Although the combinatorial stack-up problem has important practical applications, it

seems to be not investigated by other authors up to now. However, the following facts are

already known. In [17] it is shown that the stack-up decision problem is NP-complete [6],

but can be solved e�ciently if the storage capacity s, or the number of stack-up places p is

�xed. In [16] the performances of simple stack-up algorithms are compared with optimal

o�-line solutions by competitive analysis [3, 5, 10]. An algorithm called Most-Frequently is

introduced which processes each (s; p)-sequence with a storage capacity of (p+1)s�p bins

and p stack-up places, or with a storage capacity of s bins and at most p�(log

2

(s)+2) stack-

up places, respectively. In [18] it is shown that the performance of the Most-Frequently

algorithm is the best that can be achieved by any deterministic on-line stack-up algorithm.

The algorithm takes at most 2p stack-up places to process any (s; p)-sequence with a storage

capacity of 2s bins. On-line stack-up algorithms do not see the whole sequence but the �rst

s bins. Additionally, they know whether any bin they see is the last one for its destination.

The Most-Frequently algorithm is the best polynomial time approximation algorithm for

the stack-up problem known up to now that approximates both objectives within a small

factor. In contrast to the previous work, we give in this paper some approximability results,

and a polynomial time o�-line approximation algorithm for the stack-up problem.

The paper is organized as follows. In the next section we introduce the preliminary

notations for processing sequences of bins. Afterwards, we show that the stack-up decision

problem remains NP-complete, even if we restrict the sequences to contain at most 9 bins

for each pallet. Furthermore, we show that for any positive integers c and d there is no

polynomial time approximation algorithm that yields an (s + c; p + d)-processing of any

(s; p)-sequence, unless P = NP. In section 4 we show that the stack-up problem can be

solved in polynomial time if the sequences contain at most 3 bins for each pallet. Finally,

we introduce an O(n � log(p))-time approximation algorithm that takes at most p+1 stack-

up places and a storage capacity of s � (1 + ln(p+ 1)) bins to process (s; p)-sequences. The

algorithm is not an approximation algorithm in the classical sense [7, 12] since it violates

both feasibility and optimality. Nevertheless, such relaxed or multi-criteria approximation

algorithms are also considered by other authors [9, 14, 19].
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