
A Realistic Cost Model for the

Communication Time in Parallel Programms

on Parallel Computers Using a Service

Hardware

�

Matthias Fischer

1

Jochen Rethmann

2

Alf Wachsmann

1

1

Universit�at-GH Paderborn

Heinz Nixdorf Institut und

Fachbereich Mathematik-Informatik

D-33095 Paderborn

email: fmafi,alfg@uni-paderborn.de

2

Heinrich-Heine-Universit�at

D�usseldorf

Institut f�ur Mathematik

Universit�atsstr. 1

D-40225 D�usseldorf

email:

rethmann@cs.uni-duesseldorf.de

Abstract

In this report, we develop a cost model for the communication time on parallel

computers consisting of processors and a service network, i.e., a network performing

services like broadcast, synchronization, and global variables. Because we do not have

a parallel computer at our disposal that is equipped with a service network, we emulate

the service network on a recon�gurable Transputer network.

Our cost model describes the communication time of accesses to global variables

and consists of a multi-linear function. The cost model includes the parameters packet

size, send hot spot (the number of messages sent out by one processor), and number

of processors accessing global variables. We show that these parameters inuence the

communication time in a high degree and capture important parameters like network

contention.

We implement a Bitonic Sort, Sample Sort, Matrix Multiplication, and Connected

Components algorithm, and we show that our model is able to predict the communi-

cation time within a 10% error if indirect service networks are used. The applications

show that it is easy for a programmer to determine the parameter values for our model

and that our new cost model precisely predicts the communication time of parallel

algorithms.

We explore the interaction of hot spots and asynchrony and show that the inuence

of hot spots to the communication time is not as high as one would expect from

theoretical considerations in a synchronous model. Therefore, we do not apprehend

the hot spot in our cost model.

Furthermore, we minimize the communication time of accesses to global variables

by �nding a balance between the number of messages in the network and their size.

Our model predicts the optimal values for these parameters which we validate by

experiments. A modi�ed implementation of our routing which determines on-line the

optimal parameter values for an access to a global variable achieves good speed ups.

�

Supported in part by the DFG-Sonderforschungsbereich 376 \Massive Parallelit�at: Algorithmen, Ent-

wurfsmethoden, Anwendungen."

2 CONTENTS

Contents

1 Introduction 3

2 Motivation for a new cost model 5

2.1 Our hardware model . 5

2.2 Existing models . 6

2.3 Drawbacks of the existing models . 7

3 Realization on a Transputer Network 8

3.1 The Parsytec SC-320 . 9

3.2 Algorithms for the service functions and their implementation 9

4 The new cost model 11

5 Receive hot spots and asynchrony 15

5.1 The inuence of hot spots on the communication time 16

5.2 Inuence of asynchrony on the hot spot e�ect 17

5.3 Reduction of the communication time by large asynchrony 18

6 Precision of the model 19

6.1 Matrix Multiplication . 20

6.2 Computing Connected Components in Dense Graphs 21

6.3 Bitonic Sort . 22

6.4 Sample Sort . 23

6.5 Valuation of the results . 24

7 Minimizing the routing time with use of the cost model 26

8 Conclusions 28

3

1 Introduction

In this report, we introduce a realistic cost model for communication times of parallel pro-

grams. It is well known that the uniform cost model of PRAMs does not apply for todays'

parallel computers. Therefore, many approaches try to overcome this problem. The new

model considers blockwise communication, message latency, and other e�ects which can be

observed on parallel computers.

Basic Services. The hardware we have in mind is a processor network which is connected

via routing facilities. The routing strategies considered are mostly store-and-forward or

wormhole routing. On top of this physical network, a software layer is built which realizes

some useful basic services like routing, synchronization, and virtual shared memory in terms

of global variables (see Figure 1). We use an extra network (\service hardware") for executing

the service part of the hardware in contrast to [22], where the basic services and application

programs are executed in the same network. \Service hardware" in this sense means a special

purpose hardware to support standard processors with additional means in order to reduce

their workload (see Figure 1).

service hardware

...

processors

(a) Hardware view.

basic services

operating system

hardware

application

programming languages; libraries

(b) Software view.

Figure 1: Concept of basic services.

Examples for \service hardware" are the routing network of the GC/PP (Parsytec) where

the standard processors (PowerPC 601) are connected by routing chips (T805) which are

interconnected by a fat mesh. Other types of service hardware are the synchronization (and

routing) network of the CM-5 (Thinking Machines) and the virtual shared memory hardware

of the KSR1, the ALLCACHE engine (Kendall Square).

The idea of service functions also arises in software: there are several libraries and pro-

gramming languages which support or realize service functions. Libraries that just support

routing functions are MPI [19], the Parmacs-Macros [8], and PVM [12]. The Oxford BSP

Library [20] is a library and OCCAM-light [23] is a high level programming language which

both realize functions for routing, synchronization, and shared memory in terms of global

variables.

Types of Service Networks. Network-based parallel computers can be divided into two

classes depending on whether there is a processor and a memory module at each node of

the network (direct network) or the processors and memory modules are interconnected by

a network of switches (indirect network). We use the term virtual shared memory to refer to

4 1. Introduction

a memory that is distributed among distinct memory modules but, can be accessed by each

processor via routing.

Our intention is to develop a cost model that allows precise predictions of the time needed to

access shared memory in direct and indirect network-based machines. The parallel computer

we had at our disposal is a Transputer system. Although the Transputer has routing devices

with direct memory access (DMA) on-chip the CPU is involved every time a message has

to be forwarded because bu�ering of messages and some other work have to be done by the

CPU.

Because is it not easy to design service hardware for a parallel computer and to exchange it,

we emulate this hardware on a processor network. Therefore, to get real autonomous routing

devices, we split the processor network into two parts: one for executing the application pro-

gram { we call this part application network { and one for simulating the service function {

the service network (see Figure 2). We use direct service networks like the Cube-Connected-

Cycles network (CCC) or the Shu�e-Exchange network (SE), and indirect service networks

like the Buttery network (BF). Throughout the paper we assume that the number of appli-

cation processors is equal to the number of shared memory modules. In our indirect network,

the service processors emulate the routing devices and the shared memory modules.

direct
service
network

application
processors

service proc./shared memory modules

service processors

(a) direct service network: Shu�e-

Exchange network of dimension

three.

application
processors

indirect
service
network

(b) indirect service network: But-

tery network of dimension three.

Figure 2: Di�erent possibilities for simulating a service network on a processor network.

The algorithm we use to implement the basic service functions (routing, shared memory,

and synchronization) on a store-and-forward Transputer system is a simple shortest paths

routing which uses FIFO queues for storing the messages. In Section 2, we introduce the

hardware we have in mind and show that the existing cost models can not be used in our

case. We describe the hardware we use and the emulation of service hardware in Section 3.

Cost Model. There are two cost models, the BSP model by Valiant [21, 13, 14] and the

LogP model by Culler et al. [9] which claim to be more realistic than the PRAM model.

However, both models do not take some important parameters for the communication time

into account. Making experiments on our system, it turns out that neither the BSP nor the

LogP model can predict the runtime of programs realistically. Both models take an upper

bound for the latency for sending messages of a �xed, short size. This assumption does not

�t to our intended hardware.

We introduce k-k-accesses as basic communication pattern, where a portion r of the appli-

5

cation processors are sending/receiving exactly k messages of length l in Section 4. For this

routing pattern, we develop a cost function (with coe�cients for each network topology)

which depends on the three parameters k, l, and r. The used hard- and software implies a

linear dependence of the function on each of these parameters which results in a trilinear

function. We validate these considerations by performing measurements on our implemented

system where we use the basic service functions to realize the k-k-accesses.

A hot spot at a shared memory module occurs if more than one processor access the same

variable at the same time. These requests must be answered one after the other, so the

computation of the processors is sequentialized. In Section 5, we show that the inuence of

hot spots on the runtime can be balanced out by asynchronous processor networks.

To demonstrate the precision of our model, we implement several application programs on

top of our system (Section 6). We predict the communication times and compare them with

the measured communication times. This comparison shows that our model is well suited

for indirect service networks but lacks precision for direct service networks.

As an application of our model, we optimize the runtime of the routing we used for realizing

the basic service functions in Section 7. For routing, there is a trade-o� between the number

of messages in the network and the lengths of these messages. We speed up the routing by

splitting long packets into smaller ones such that the routing becomes more like wormhole

routing. We use our cost model to calculate the optimal packet size in order to optimize the

routing time. Measurements validate the predictions.

2 Motivation for a new cost model

A model should be well suited to handle the trade-o� between applicability, precision, and

generality, which means that one should be able to estimate the communication time of a

program easily and precisely, whereas generality means that one should be able to describe

many communication patterns in parallel programming. So, the task is to develop a model

that �nds a balance between detail and simplicity: all important parameters have to be taken

into account in order to make precise predictions of communication times without making

the model too complicated to handle.

2.1 Our hardware model

Our used hardware can be characterized as a processor network with a store-and-forward

router. The processors are standard sequential processors. Each processor has at least one

routing facility (router) which is interconnected in a network that can be described as an

undirected graph.

The router works in a store-and-forward manner, i.e., a packet has to arrive completely on

a router before it can be forwarded. Sending a packet to a direct neighbor takes a �xed

amount of time (o�set o) to build up the communication line. The transmission time for a

packet is linear in the number of bits to be transmitted. Thus, the time to transmit a packet

over a distance of d hops takes time

L

s&f

= d � (o+ s � g) ;

with s beeing the packet size in bits and g the transmission time per bit. We assume that the

6 2. Motivation for a new cost model

constant o�set o is small (so the transmission time depends linearly on the packet size) but

can not be neglected. If we would change to wormhole routing, the inuence of the distance

between sending and receiving nodes becomes smaller. The transmission time for a worm,

consisting of its of length F bits, is

L

wh

= o+ s � g + F � g � d :

A comparison of the store-and-forward routing and the wormhole routing shows that in both

cases the transmission time for data linearly depends on one or more parameters. So, the

store-and-forward router is no restriction for the generality of our cost model.

2.2 Existing models

PRAMmodel. The most popular but not realistic abstract parallel machine in theoretical

computer science is the PRAM model. The advantages of the PRAM model are the shared

memory and the synchronized working processors. Because of the uniform cost model, it

is relatively easy to calculate the complexity of PRAM programs. Design of algorithms is

relatively easy too, since all data structures are stored in the shared memory. On many real

parallel machines, processors do not have shared memory but distributed memory and the

processors work asynchronously. One consequence is that an access to distributed memory is

much more expensive than access to local memory. Therefore, the uniform cost model of the

PRAM is not able to predict the runtime of programs on real machines. The programming

model of the PRAM, e.g., tending to use small global variables, is misleading for algorithm

designer and programmers of real machines where rare use of communication can be (or is)

essential.

PRAM extensions. There are several attempts to make the PRAM model more realistic.

The BPRAM model [3] distinguishes between local memory and shared memory. Access to

the shared memory is done by communication in blocks. This takes into account the fact

that the costs for routing many small packets are larger than for routing few large packets.

Another model which distinguishes between local and shared memory is the LPRAM model

[2].

The Phase-PRAM model [15] tries to overcome the problem of asynchrony. The Phase-

PRAM model divides the computation in phases. In each phase, processors work asyn-

chronously. After each phase, all processors are synchronized.

The problem inherent to all PRAM extensions is to model the limited communication band-

width and the send/receive overhead of communication. The send/receive overhead is the

time a processor is engaged in the transmission or reception of a single message. During this

time, the processor cannot perform other operations.

Distributed memory models. The problem of module contention, which occurs in pro-

cessor networks, can be handled by the Distributed Memory Machine (DMM) [16] or the

Module Parallel Computer (MPC) [18]. The memory is divided into memory modules. At

any time step, the access to a single module is only allowed to one processor.

Today, the most popular realistic cost models are the BSP model and the LogP model but

they do not scope the parallel computers described above in their communication time.

2.3. Drawbacks of the existing models 7

BSP model. Valiant's Bulk Synchronous Parallel Model [21] consists of processor/memory

modules, a router, and a synchronization mechanism. The basic communication pattern

considered is an h-relation, where certain processors send and receive up to h packets. The

router is capable to route any h-relation in g � h + s steps, where g is the gap between two

packets which have to be sent, s is the startup time, and h is the maximum number of

packets which are sent or received by one of the processors. This model captures the limited

communication bandwidth of real parallel machines by the parameter g. It further abstracts

from the used network topology.

An extension of this model, called BSP

�

model, introduced in [6] includes an additional

parameter for message lengths.

LogP model. Culler et al. suggested the LogP model [9]. It consists of processor/memory

modules and an arbitrary kind of network to provide point-to-point communication. The

network performance is described by three parameters L, o, and g, where L is the maximum

latency, o the send/receive overhead, and g the gap between two packets which have to be

sent. The aim of the LogP model is to �nd a balance between communication and local

computation, such that idle times of the processors are minimized.

2.3 Drawbacks of the existing models

The LogP model is not suited to predict the execution time of algorithms precisely because,

on some machines, the latency for routing packets strongly depends on the length of the

path in the network. Therefore, estimating latency by the worst case (L) leads to non

precise predictions. This is not crucial for those machines considered in [9] because the

send/receive overhead in such machines is much greater than the latency L. This argument

leads to the LogGP model [1] which uses the parameter G to model di�erent packet sizes.

On machines like ours, the packet size does play an important role for the communication

time, so the BSP and the LogP model are not suitable for our purposes. Also, the congestion

(i.e., the communication load) of the network is a crucial parameter for the communication

time. For the mentioned models (BSP, BSP

�

, LogP, LogGP), it is of no importance how many

messages are contending in the network because they allways assume the worst case which

produces in situations of low or medium load in the network great deviations of predicted

and real communication time.

BSP and LogP model neglect important parameters because they do not model packet size

and the number of communicating processors (i.e., the communication load) which are very

important parameters that inuence the latency in a large degree. We explain the two in

the following.

If one processor has to access a �xed amount of data this can be done by sending one big

or many small packets. On one side, too small packet size (i.e., many packets are sent)

leads to a great overhead because each packet consists of the real data and a header and the

time needed to transmit some data is not only determined by the transmission throughput

but also by some small but not neglectable startup cost. On the other side, if the packet

size is too large (i.e., few packets are sent) the packets can not be pipelined by the routing

and the parallelism of the Transputer links is not utilized. Therefore, the aim is to �nd the

optimum packet size dependent on the amount of data to access. In order to motivate this

8 3. Realization on a Transputer Network

consideration we show an example and assume that one single processor sends one packet of

size D to another processor over a distance of n hops.

The time needed to transmit D items over one link is T

1

= S + D � t, where S denotes

the startup cost and t the transmission time per item. If a packet has a distance of n

links to travel the time for the transmission is T

n

= n � T

1

= n � (S + D � t). If we split

up the access into m accesses which produces m packets each of size

D

m

the �rst packet

needs time n � (S +

D

m

� t) to reach the destination, while the last packet arrives at its

destination after further (m� 1) � (S +

D

m

� t) steps, hence the total time of the split access

is T

split

= (n+m� 1) � (S +

D

m

� t).

T

split

< T

n

() (n+m� 1)(S +

D

m

� t) < n � (S +D � t) () m <

n� 1

S

�D � t

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

T

split

[ms]

splitting number m

Figure 3: Inuence of the splitting size m on the communication time. For m = 1 it is

T

split

= T

n

.

The communication time T

split

of the split access is less than the time T

n

if m <

n�1

S

�D � t.

Figure 3 shows the communication time if S = 100�s, t = 0:8 �s/item, D = 10000 items,

and n = 4. The duration of the split access is greater than the duration of the unsplit access

if m > 240, while the optimum number of packets is 15. Both, BSP and LogP model do

not take these considerations into account. In Section 7 we show how one can determine

the right size of the splitting number by the use of our cost model even if more than one

processor accesses a global variable.

Another important inuence on the routing time is the network contention. Communication

costs in the case that exactly one pair of processors is communicating and in the case that

many pairs of processors communicating are equal to (2o + L) in the LogP model. On real

machines the communication costs in the case that many pairs of processors communicate

is more expensive than in the case that one pair communicate because in most routing

situations contention occurs in the network. The LogP model neglect this fact because it

always takes the worst case latency and hence has no parameter for the network contention.

3 Realization on a Transputer Network

Because we have no parallel computer at our disposal that is equipped with the appropriate

routing facilities we have to emulate the service network. In this section, we describe the

3.1. The Parsytec SC-320 9

realization of the service network. First we describe the used hardware, second the process

structure and give a more detailed description of the implementation. The tasks of the service

processor (and processes) are routing and executing the service functions. We describe the

processes for these tasks separately. Finally we compare pipelining in direct and indirect

networks.

3.1 The Parsytec SC-320

The parallel computer we implement our emulation on is a Parsytec SC-320 [11]. It consists

of a free con�gurable network of T800 Transputer processors (32bit RISC-processors). Each

of the 320 processors has four routing devices on chip, so networks may have a degree of up

to four.

A main di�culty in programming routing algorithms on Transputers is that the routing

devices (links) transmit data in parallel by accessing the memory of the CPU directly (DMA).

But they can not handle packets autonomously because the routing devices are not able to

determine the destination of packets. So the CPU has to be involved each time a packet

arrives. It has to manage bu�ering and to determine the destination of the packets. As

a consequence a calculation running on a Transputer is interrupted if a packet wants to

traverse the node. This is the reason why we only consider service networks (see Figure

2), in contrast to [22], where application programs and service functions are executed in

the same network. Another speed reduction of the calculations is caused by the concurrent

memory access of the processors and of the links, whenever the links transmit data.

Process communication is done via channels in a bit-serial fashion. In the case that processes

are placed on di�erent processors communication is done via Transputer links (hardware

channels), while processes placed on the same processor communicate via software channels.

Summerizing, one can say that the Transputer network is a representative of the hardware

model we described above.

3.2 Algorithms for the service functions and their implementation

There are 14 processes on a service processor (see Figure 4).

In order to avoid performance reduction each link must be supported by a process of its own

(see Figure 4 \Distributor" and \Guarded output"). Only under this condition it is possible

that links transmit data parallel.

Processes for routing. For routing packets in our service network we implemented a

shortest path routing algorithm. This routing algorithm is not free of deadlocks. If nec-

essary, packets that arrive at a processor are stored in queues before they are forwarded

to a neighboring processor. The sizes of these queues are large enough to avoid deadlocks

in almost every case in practice. In a preprocessing phase, before starting the application

program, the shortest paths of the service network are computed sequentially and stored in

a look-up table.

The theoretical behavior of the shortest path algorithm is unknown. In [4] a routing is

presented which uses shortest paths as routing paths, but unbounded queues and a growing

rank protocol is used. It is shown that routing any set of packets along shortest paths

10 3. Realization on a Transputer Network

in0

in1

in2

in3

out0

out1

out2

out3

.....

.....

.....

.....

.
.
.
.
.

Distributor

Service manager

GlobalVariables

Link

Buffer for one packetQueue for service manager

Guarded outputOutput queue

Synchronization counters

Data channel

Request channel

Figure 4: Process diagram of the service processor.

through an arbitrary n-processors network takes time O(congestion+ logn+diameter) with

high probability.

The process \Distributor" (see Figure 4) is connected with an incoming link of the Transputer

and it processes incoming packets. If an incoming packet reaches its destination processor

the Distributor sends the packet to the queue of the service manager. If the packet has

not reached the destination processor the Distributor searches in the look-up table for the

correct outgoing link and sends the packet to the according queue and guarded output.

The process \Queue" bu�ers packets in a FIFO queue. A further task is to combine packets

for the same synchronization operation. For this the FIFO queue searches for a packet of

the same synchronization operation and combines them if other packets are found.

The Transputer T800 does not support guarded outputs. In order to avoid a blocking

of the queues, because of packets which cannot be delivered to a neighbor processor, the

process \Guarded output" simulates this type of channel. Each process \Guarded output"

is connected with one outgoing link and can bu�er one packet.

Processes for executing the service functions. We realize shared memory in terms of

global variables which may have an arbitrary type (e.g., integer, arrays, etc.). The variables

get an unique number and are distributed over the service network either via universal

hashing or via direct placement.

We have to distinguish read and write accesses to global variables. If an application processor

wants to read a global variable a read request is sent to the service processor that stores the

global variable. The service processor writes the contents of the variable into a packet and

sends it back to the requesting application processor. If an application processor wants to

write some data into a global variable it writes the data into a packet and sends it to the

11

service processor that holds the global variable. The service processor writes the data into

the global variable and sends an acknowledgement back to the application processor. For the

synchronization of all or parts of the processors we implemented a barrier synchronization

mechanism.

The service functions are executed by the process \Service manager". This process manages

the counter for synchronization and the memory for global variables. According to the header

of the packet (at most 12 Bytes) it detects the type of service function. The service manager

watches the counter for synchronization and starts a broadcast for an acknowledgement, if

necessary. For accesses to global variables it copies the data from the global memory into a

packet or from a packet into the global memory.

Di�erences to routing processors of indirect service networks. Indirect service

networks are consisting of routing processors and service processors (see Figure 1). The only

task of the routing processor is to route packets. It does not store synchronization registers

or global variables. So the process structure is similar to the process diagram of the service

processor without the process \Service manager" and the queue for the service manager.

4 The new cost model

In order to predict the runtime of the basic service function we have to de�ne a communi-

cation pattern that we want to perform and whose runtime we want to model. The pattern

should be as usable but should have more strength than the h-relation of the BSP model

which does not distinguish send and receive hot spots: A h-relation is given if one processor

sends up to h messages to distinct processors and if up to h processors sending one message

to the same processor. As we see later in this section the �rst type of hot spots inuences

the communication time in a large degree in contrast to the latter type.

De�nition 1 (k-access) Let [p] denote the set f0; : : : ; p�1g and F

k

= ff j f : [p]� [k] �!

[p]g as k 2 IN. Every processor P

i

contains k packets, labeled by 0; : : : ; k � 1. \Routing the

function f 2 F

k

" means: Send the j-th packet from processor P

i

to the shared memory module

S

f(i;j)

, access the global variable, and send back a packet to processor P

i

. All k packets of a

processor are sent successively in k steps one after another.

In the model presented here we look at the more special k-k-accesses of the next de�nition.

De�nition 2 (k-k-access) Let f 2 F

k

. Let us abbreviate f(i; j

0

) by f

j

0

(i) for any �xed

j

0

2 [k]. If f

j

0

: [p] �! [p] is a permutation for all j

0

2 [k], then this special case of a F

k

routing function is called k-k-access.

Note: If only a portion r < 1 of the processors are involved in a k-k-access than f

j

0

is a

partial permutation for all j

0

2 [k]. We have to distinguish between hot spots at the shared

memory modules and at the application processors. We call the �rst receive hot spot and

the latter send hot spot. For example the case where only one processor accesses n global

variables at the same time (i.e., a send hot spot) is described by r =

1

p

and k = n.

12 4. The new cost model

In the following we describe the dependencies of the communication time for a k-k-access on

di�erent parameters, how we model these dependencies, and how we validate our consider-

ations by measurements. To determine the coe�cients of our cost function we measure the

runtimes for several di�erent k-k-accesses and average them. For each k-k-access we choose

k permutations at random. In our model the contention is captured on the one side by the

parameter r, on the other side by building the averages on many di�erent access patterns.

Packet size l. Our service network is a processor network with a store-and-forward router.

Therefore, transmission of packets from one processor to a neighbor processor via a link

depends linearly on the packet size. Packets are bu�ered in FIFO queues and routing is

done with the help of look-up tables. So processors internal transport of packets depends

linearly on the packet size, too. Thus, we expect a linear dependency of the communication

time of a k-k-access on the packet size l which is con�rmed by our measurements (cf. Figure

5).

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

T

k-k

[ms]

Parameter l

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

(a) For k = 1; r = 1.

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

T

k-k

[ms]

Parameter l

BF(4)

BF(5)

CCC(3)

CCC(4)

SE(5)

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

SE(6)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

(b) For k = 5; r = 1.

Figure 5: Dependency on parameter packet size l of the communication time of a k-k-access.

Each processor on the way of a packet through the service network causes an o�set which is

produced through initialization of variables, initialization of links for transmission, and the

packet header. This results in an o�set which depends on the average path lengths of the

network (cf. Figure 5).

The beginnings of the curves (cf. Figure 5) are bended. Small packets hinder others not as

much as large packets do because large packets stay longer in a network node than small

packets. This leads to larger routing times per Bits for larger packets.

Portion r of accessing processors. It is very di�cult to determine the network con-

tention for an asynchronous processor network. In order to respect the contention by a

parameter we introduce the parameter r which is that portion of processors that is involved

in a k-k-access to global variables. We call an application processor that accesses a global

variable an \accessing processor". The processors that do not call service functions compute

local operations or just wait.

13

The parameter r represents the behavior of the network in the case of contention. If the

number of accessing processors is small then the contention in the service network is small.

More accessing processors are causing higher contention because the network contains more

packets and the probability that two packets arrive at the same processor at the same time

is high. This leads to longer execution times for a k-k-access.

Although the greedy routing algorithm of an one-to-one routing problem in the Buttery

network takes at least O(

p

N) routing steps in worst case the routing algorithm performs

quite well on average [17]. Thus, the contention in the Buttery network is small on average.

Since our measured access times are average values we expect that the dependency of the

runtime of a k-k-access on r is very small for indirect service networks like Buttery networks

(BF).

In Figure 6 we see that for direct service networks like Cube-Connected-Cycles (CCC) or

Shu�e-Exchange (SE) networks the access time increases much more, so the contention is

higher in direct networks than in indirect networks.

Furthermore, an indirect network contains more processors than a corresponding direct net-

work: In the case of a direct service network the number of packets for a k-k-access is r � k

packets per processor on average. In the case of an indirect service networks with p � log p

processors there are r �

k

log p

packets per processor on average.

Because of our measurements (cf. Figure 6) we model execution time of a k-k-access in

dependency of r by a linear function.

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

T

k-k

[ms]

Parameter r

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

(a) For k = 1; l = 1024.

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

T

k-k

[ms]

Parameter r

BF(4)

BF(5)

CCC(3)

CCC(4)

SE(5)

3

3

3

3

3

3

3

3

3

SE(6)

2

2

2

2

2

2

2

2

2

(b) For k = 5; l = 1024.

Figure 6: Dependency on parameter portion of accessing processors r of the communication

time of a k-k-access.

Send hot spot k. Parameter k is the number of packets which are sent/received in one

k-k-access by each accessing application processor. If all application processors are involved

in a k-k-access (r = 1) then each shared memory module has to process exactly k packets.

If r is less than 1 the shared memory modules have to process at most k packets.

We expect a linear dependency of the runtime of a k-k-access on k because each of the

involved application processors sends/receives exactly k packets one after another. This

14 4. The new cost model

results in a send hot spot of size k at the application processors. These considerations are

con�rmed by our measurements (cf. Figure 7).

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9

T

k-k

[ms]

Parameter k

3

3

3

3

3

3

3

2

2

2

2

2

2

2

(a) For r =

1

8

; l = 1024.

50

100

150

200

250

1 2 3 4 5 6 7 8 9

T

k-k

[ms]

Parameter k

BF(4)

BF(5)

CCC(3)

CCC(4)

SE(5)

3

3

3

3

3

3

3

3

SE(6)

2

2

2

2

2

2

2

2

(b) For r = 1; l = 1024.

Figure 7: Dependency on parameter size of send hot spots k of the communication time of

a k-k-access.

Cost function. We denote the parallel execution time of a k-k-access by the function

T

k-k

(k; l; r). Several measurements with di�erent values for the parameters show that the

execution time of a k-k-access can be modeled precisely by a trilinear function. The coe�-

cients c

0

; : : : ; c

7

depend on the type of network used and the size of the network.

T

k-k

(k; l; r)= c

7

� klr + c

6

� kr + c

5

� kl + c

4

� lr + c

3

� k + c

2

� l + c

1

� r + c

0

The coe�cients are quanti�ed with the method of least square. The measured coe�cients

for some networks are listed in Table 1.

network c

7

c

6

c

5

c

4

c

3

c

2

c

1

c

0

BF(3) 0.519 102.2 4.989 2.341 382.4 15.23 -51.73 1242

BF(4) 0.475 108.8 5.203 2.760 371.9 20.78 -27.32 1619

BF(5) 0.056 111.0 5.419 3.583 373.5 26.49 -1.924 1969

SE(3) 3.371 715.5 2.304 11.22 312.4 9.413 -51.72 1242

SE(4) 6.896 1198 2.569 17.13 199.0 21.55 -710.0 1765

SE(5) 10.28 1852 2.205 10.52 90.98 32.24 -1388 2426

SE(6) 14.62 2321 1.879 7.360 86.71 44.53 -1776 2986

CCC(3) 7.631 1051 2.401 9.169 239.0 26.75 -579.7 1927

CCC(4) 14.53 1983 1.398 -0.285 159.9 43.23 -1335 2681

Table 1: Coe�cients for the cost function of the communication time of k-k-access for some

networks

15

Pipelining in direct and indirect networks. By varying the parameters k and r we

con�rm that pipelining in leveled networks (like the Buttery networks) is better than in

direct networks. In a direct network with average path length d sending k packets from

one processor to another processor costs time
(k + d) in average case because the �rst

packet reaches its destination after d hops while the last packet arrives at the destination

after further k� 1 steps (pipelining). If each processor sends k packets to another (like in a

permutation pattern) it costs
(kd). In each step only p packets can be sent because each

of the p processors can transmit at most one packet at a time, but p � k � d steps have to be

executed. In this case the pipelining e�ect is very small.

If the processors at the �rst level of an indirect network (like BF) send k packets to the

processors at the last level there is pipelining, too. Then p � k packets have to be sent over

a distance of log(p) hops, so p � k � log(p) steps must be executed. In each step (except the

�rst log(p) and the last log(p) steps) p � log(p) packets can be sent by the routing switches.

Communication time in comparison to the case that only one processor sends k packets is

nearly the same on the average.

Measurements con�rm this theoretical consideration (cf. Figure 8). Figure 8 shows an exam-

ple for an indirect network (Buttery) and a direct network (Shu�e-Exchange). We compare

two cases: In the case r = 1 all processors are involved in a k-k-access and in the case r = 1=8

only two processors of the 16 processors network are involved in a k-k-access. The di�erences

of T

k-k

of these two cases for the Buttery network are very small, for the Shu�e-Exchange

they are very high.

5 Receive hot spots and asynchrony

Until now, we regarded only k-k-accesses. In order to quantify receive hot spots we now

introduce a new parameter h and use the more general k-accesses which are de�ned in

Section 4. The value of parameter h is a real number in the range [

1

p

: : : 1] and describes the

maximal portion of application processors which access in at least one of the k steps of a

k-access the same shared memory module. In the case of k-k-accesses we have h =

1

p

. If h is

equal to 1 then in at least one of the k steps of a k-access all application processors access the

same shared memory module. In Section 5.1 we show that the inuence of receive hot spots

on the communication time is not as large as one might expect by theoretical considerations.

We show that the communication time is inuenced in a high degree by the e�ect of asyn-

chrony. By asynchrony we mean the \range" between two successive synchronizations. We

quantify this range by introducing the new parameter a. The value of parameter a is the

number of k-accesses which follow one after the other without synchronization or local com-

putation. In other words: The value of a is the number of k-accesses between to successive

synchronizations.

Let the ratio T

k

=a denote the amortized communication time for one of the a successive

k-accesses. In Section 5.2, we show that the inuence of receive hot spots (i.e., h >

1

p

) on the

amortized communication time decreases if the value of parameter a increases. This means,

if many hot spot k-accesses are executed one after another without synchronization between

the accesses, the amortized communication time for one of these accesses is smaller than for

the execution of a few hot spot accesses one after another.

In Section 5.3 we show that the previously described e�ect can be observed even in the case

16 5. Receive hot spots and asynchrony

of k-k-accesses (i.e., h =

1

p

). We show that in general the amortized communication time

decreases if many k-accesses are executed one after another (i.e., the value of parameter a

is large). But we will see that a saturation occurs for larger values of parameter a that

means a further increase of the value does not lead to a further reduction of the amortized

communication time.

5.1 The inuence of hot spots on the communication time

A hot spot at a shared memory module occurs if more than one application processor access

the same variable (or di�erent variables at the same shared memory module) at the same

time. These requests have to be answered one after the other and so the runtime for such

a memory access depends linearly on the number of accessing processors. This is the case

in synchronous indirect service networks where all processors are equally distant from the

shared memory modules and the starting times of the packets are equal.

In asynchronous processor networks and direct networks the e�ect of hot spots is di�erent

and can be neglected under certain conditions. Figure 9 shows the measurements of the

communication time over the parameter h for two networks and two values of parameter k.

We begin our study of hot spots in the case a = 1, i.e., between two successive k-accesses

there is always a synchronization. If all p application processors (e.g., p = 32 in the BF(5))

accesses the same global variable (h = 1) than the communication time is not 32 times as

large as it is in the case of k-k-accesses (i.e., h =

1

p

) the slow down is at most two.

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

T

k-k

[ms]

Parameter k

BF(4), r = 1

BF(4), r = 1=8

SE(4), r = 1

SE(4), r = 1=8

Figure 8: Dependency on parameter size

of send hot spots k of the communication

time of a k-access, l = 1024.

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

T

k

/a [ms]

Parameter h [%]

BF(5), k = 5

BF(5), k = 1

CCC(4), k = 5

CCC(4), k = 1

Figure 9: Dependency on parameter h of

the communication time of a k-access, l =

256, a = 1.

Let us �rst take a look at indirect service networks (like BF). Assume that each accessing

processor sends only one packet (i.e., k = 1) and that the starting times are di�erent because

of the asynchrony. If only few application processors send packets to the same shared memory

module (i.e., h is small) the arrival time for the packets di�er because of the di�erent starting

times and the equal distance of the processors from the shared memory modules, so no real

hot spot arise. If many application processors send packets to the same shared memory

5.2. Inuence of asynchrony on the hot spot e�ect 17

modules (i.e., h is large) some packets arrive nearly at the same time because the starting

times of the packets usually do not di�er in a wide range. So the linear dependency of

the runtime on the number of packets starts at a certain amount of accessing processors

(cf. Figure 9).

Now let us take a look at direct service networks (like CCC and SE). Assume that the starting

times are all equal and each accessing processor sends only one message (i.e., k = 1). If only

few application processors access global variables the packets arrive at di�erent times at

the shared memory module because the processors are not equally distant from the shared

memory module. No real hot spot arise. If many application processors access the same

global variable then some packets arrive at the same time because not all the paths have

di�erent length. As in the case of indirect networks the linear dependency starts at a certain

amount of accessing processors in direct service networks, too.

The inuence of the di�erent path length can be balanced out by di�erent starting times. If

a packet that has a long distance to travel is sent before a packet that has a short distance

to go the packets can arrive at the same time, so the inuence of receive hot spots on the

communication time in direct service networks is stronger than in indirect service networks

(cf. Figure 9).

If k is greater than 1 the described e�ect occurs simultaneously at several shared memory

modules, thus the explanation holds in this case, too.

Two scenarios. Now we extend our study to the case a > 1, i.e., there is no synchro-

nization between successive k-accesses. In the �rst scenario we involve in each of the a

k-accesses the same shared memory module (i.e.., the hot spots are the same in each of the a

k-accesses). In the diagrams we denote this case with the pre�x \es". In the second scenario

we change in each of the a k-accesses the accessed shared memory modules (i.e.. the hot

spot changes from one of the a accesses to the next one). We denote it with the lack of \es".

Our intention for the �rst scenario is to produce a stronger type of hot spot situation than

in the second scenario.

5.2 Inuence of asynchrony on the hot spot e�ect

We show that large values of parameter a reduce the inuence of hot spots on the amortized

communication time. Let us �rst take a look at indirect service networks (like BF) and

the simple case k = 1. Assume that the �rst 1-access is done at the same time by all

application processors and each application processor do a successive 1-accesses without

intermediate synchronizations. Then the starting times of all packets except the �rst ones

of each application processor are shifted. All the destinations are equidistant from the

sources of the packets, so the �rst packets of each application processor of a k-k-access arrive

nearly at the same time at the shared memory module. The answers for these packets are

sequentialized at the module, so that the last acknowledgement or the last data packet arrive

at slightly shifted times at the requesting application processor and the next packet of this

application processor is injected into the network with a shifted starting time. This e�ect

leads to asynchrony and prevents a hot spot at the shared memory module for the following

packets. So only the �rst packet of each application processor produces a receive hot spot.

In direct service networks (like CCC and SE) the shifted starting times of the packets do

not necessarily cause di�erent arrival times for the following packets because the di�erent

18 5. Receive hot spots and asynchrony

path lengths can balance out the shifted starting times. Figure 10 shows measured curves

of the amortized communication time in dependency on several values of parameter h. The

amortized communication time decreases if the value of parameter a increases.

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

0 20 40 60 80 100

T

k

/a [ms]

Parameter h [%]

2 2

2

2

2

2

2

2

2

(a) Buttery network of dimension 3.

10

12

14

16

18

20

22

24

26

28

30

0 20 40 60 80 100

T

k

/a [ms]

Parameter h [%]

a = 1 2

2

2

2

2

2

2

2

2

2

es, a = 7

es, a = 13

es, a = 19

a = 7

a = 13

a = 19

(b) Cube-Connected-Cycles network of dimension 3.

Figure 10: Dependency on parameter h of the communication time for a k-access, l =

256; k = 1.

If k is greater than 1 the described e�ect occurs simultaneously at several shared memory

modules, thus the explanation holds in this case, too.

If we change the destinations of the hot spots in each of the a k-accesses the hot spot e�ect

decreases (cf. curves of Figure 10 without \es"). Because of the time shifting packets of

former k-accesses cannot meet packets of the next k-access at the same shared memory

module.

5.3 Reduction of the communication time by large asynchrony

In this section we show that a large value of parameter a reduces the amortized communica-

tion time in the case h >

1

p

(i.e., k-accesses) as well as in the case h =

1

p

(i.e., k-k-accesses).

Figure 11 shows measurements for the Cube-Connected-Cycles and the Buttery network.

The �gures show the measured amortized communication time in dependency of di�erent

values of parameter a. For each network we show the two cases of no hot spots (h =

1

p

) and

a hot spot in which all application processors are accessing one service processor (h = 1).

The amortized communication times decreases for all the curves if the value of the parameter

a increases but all curves reach a saturation point (e.g., a = 7 for the Cube-Connected-Cycles

network in the case of no hot spots, h =

1

p

).

To explain the decreasing communication time let us regard two situations (see Figure 12).

In the �rst situation each application processor executes z successive accesses with a synchro-

nization after each access (Figure 12(a), z = 4). In terms of our model we have z k-accesses

with the parameter a = 1. In the second situation each application processor executes z

successive k-accesses without intermediate synchronizations (Figure 12(b), z = 4). In terms

of our model we have z k-accesses with parameter a = z. We denote the communication time

19

14

15

16

17

18

19

20

0 5 10 15 20

T

k

/a [ms]

Parameter a [1]

(a) Buttery network of dimension 3.

25

30

35

40

45

50

0 5 10 15 20

T

k

/a [ms]

Parameter a [1]

h = 1=p%

h = 100%

es, h = 1=p%

es, h = 100%

(b) Cube-Connected-Cycles network of dimension 3.

Figure 11: Dependency on parameter a of the communication time for a k-access, l =

256; k = 5.

P1

2
P

3
P

0
P

7

6

5

4 7

7

7 6

6

6

5

5

5 4

4

4

T = 28A

(a) Case A: Four k-accesses with an synchroniza-

tion after each k-access (a = 1).

P1

2
P

3
P

0
P

7

6

5

4 7

7

7 6

6

6

5

5

5 4

4

4

BT = 22

(b) Case B: Four successive k-accesses with-

out intermediate synchronization (a = 4).

Figure 12: Four processors executing four k-accesses. The numbers are the communication

times for one k-access.

for the �rst situation with T

A

and for the second with T

B

. Because mostly the maximum

communication time for each of the z k-accesses is reached by another application processor

we can state that T

A

> T

B

. This e�ect is illustrated in Figure 12. The maximum time

for each of the z k-accesses is reached �rst by application processor P

0

then by P

2

; P

1

, and

P

3

. Because of the missing synchronizations in the second situation, application processors

which have �nished their k-access can start immediately the following k-access. So idle

time is reduced and the communication time shrinks. This is the reason why the amortized

communication times is large for small values of parameter a in Figure 11.

6 Precision of the model

To determine the precision of our new model we compare the predicted with the measured

communication times for several implemented algorithms. It turns out that one can handle

the model very easily. Furthermore, the model is a good framework for algorithm design

20 6. Precision of the model

and it is not restricted to a few algorithmic techniques. In the following we describe the

algorithms, situations in which the prediction error is very small, and situations in which the

error is large. We analyze the reasons for these errors and draw conclusions how to improve

the model.

The errors we talk about are mean values over di�erent packet sizes, input sizes, and send hot

spots. Our measurements show that indirect service networks are described very precisely by

the model. In all but one example we obtain errors less than 10%. The inaccuracy between

predicted and measured communication times in direct service networks is much greater and

can be explained by three major inuences: synchrony, data locality, and communication

patterns.

6.1 Matrix Multiplication

Given two n�n matrices A = (a

ij

); B = (b

ij

), compute the product C = (c

ij

) = A �B of the

two matrices with p application processors. For simplicity we assume that p divides n. We

use one-dimensional arrays of size n �

n

p

to store

n

p

rows of matrix A and C and

n

p

columns of

matrix B in each of the p shared memory modules and we distribute the submatrices evenly

over the shared memory modules.

More precisely, we divide the matrices into p submatrices each: A = (A

0

A

1

: : : A

p�1

)

T

,

B = (B

0

B

1

: : : B

p�1

) and C = (C

0

C

1

: : : C

p�1

)

T

. To compute the submatrix C

i

one has to

multiply submatrix A

i

with all the submatrices of B. By multiplying submatrix A

i

and B

j

we get the

n

p

�

n

p

submatrix C

ij

= A

i

�B

j

of C

i

while C

i

= (C

i0

C

i1

: : : C

ip�1

). To avoid receive

hot spots each application processor starts its multiplication with a di�erent submatrix of

B or in other words, each application processor accesses the submatrices of B in a di�erent

order.

Program of application processor i:

read submatrix A

i

for j := i+ 1 to i+ p do

synchronize all application processor (*)

read submatrix B

j mod p

compute C

ij mod p

= A

i

�B

j mod p

of submatrix C

i

write submatrix C

i

Line (*) of the algorithm is not necessary and can therefore be left out. But this algorithm

is well suited to show the inuence of synchrony on the precision of the model, so please

keep this point in mind, we will refer to this later on.

Let l be the packet size and k the size of the send hot spots. To compute the product of two

n�n matrices the algorithm has to read or write p+2 times a submatrix of size n �n=p. The

amount of n

2

=p matrix elements of each submatrix is accessed by packets of size l while each

k-k-access delivers k � l matrix elements. So it needs n

2

=(p �k � l) k-k-accesses to read or write

one submatrix. Thus, the parameters k and l can be �xed by the user (or by the system)

and they are not dependent on the algorithm. The communication time can be estimated

by the term

T

MM

(k; l) = (p+ 2) �

&

n

2

=p

l � k

'

� T

k-k

(k; l; r = 1) :

6.2. Computing Connected Components in Dense Graphs 21

6.2 Computing Connected Components in Dense Graphs

Given an undirected graph G = (V;E) with n vertices and m = �(n

2

) edges, compute the

connected components of G with p processors. For simplicity we assume that p divides n

and p is a power of 2. We use two-dimensional arrays of size n �

n

p

to store

n

p

rows of the

adjacency matrix A of G in each of the p shared memory modules, hence the blocks of rows

are equally distributed over the shared memory modules. The algorithm we use to compute

the connected components is due to Woo and Sahni [24]. In the �rst step each application

processor i computes a spanning forest W

i

based on the information of the partition of the

adjacency matrix stored in shared memory module i, which we denote with A

i

. This is

done by a breadth-�rst search. The spanning forests de�ne a relationship R between pairs

of vertices v

i

; v

j

2 V :

v

i

R v

j

() v

i

; v

j

are in the same tree in at least one forest. The equivalence classes of

this relationship represents the connected components of the graph G. In the second step of

the algorithm these equivalence classes are computed by merging the spanning forests.

Program of application processor i:

read submatrix A

i

of the adjacency matrix A

Breadth-First Search on subgraph G

i

described by submatrix A

i

write the computed forest W

i

synchronize all application processors

for j := 1 to log(p) do

if i mod 2

j

= 0 then

read the forest W

i+2

j�1

compute the new forests W

i

by merging the old forest W

i

and W

i+2

j�1

write the new forest W

i

synchronize all accessing application processors

At the end of the computation the connected components are stored in the forest W

0

. Let l

be the packet size and k the send hot spot. The access to one part of the adjacency matrix

of size

n

2

p�16

in the �rst step of the algorithm (16 edges are stored in one variable of type

\integer") can be done in time

T

bfs

(k; l) =

&

n

2

=(p � 16)

k � l

'

� T

k-k

(k; l; r = 1) :

Application Processor 0 has to access log(p) times the spanning forests which are computed

by other application processors. At each step there are only half the application processors

accessing global variables than in the previous step. All the accesses to spanning forests (of

size n) can be done in time

T

merge

(k; l) =

�

n

k � l

�

T

k-k

(k; l; r = 1) + 2 �

log(p)

X

i=1

�

n

k � l

�

� T

k-k

(k; l; r = 1=2

i

) :

The total communication time of this algorithm is T

bfs

(k; l) + T

merge

(k; l).

22 6. Precision of the model

6.3 Bitonic Sort

The algorithm we use to sort N numbers (or keys) is based on Batcher's sorting network [5]

and is due to Culler et al. [9]. It is based on repeatedly merging two bitonic sequences to

form a larger bitonic sequence.

Let the p application processors and the p shared memory modules be numbered with

0; : : : ; p � 1.The basic operation of sorting networks is to compare two keys and exchange

these if a given condition holds (Compare/Exchange-operation). To adapt this technique to

our service network let us assume that shared memory module A holds the keys x

1

; : : : ; x

n

and shared memory module B holds the keys y

1

; : : : ; y

n

. Then application processor A reads

all the keys in shared memory module B and vice versa. From a previous step current values

of the keys of shared memory module A (B) are stored locally in application processor A

(B). Both application processors compare the pairs x

i

and y

i

, i = 1; : : : ; n, and store the

maximum or the minimum of these pairs in the according shared memory module. Let

us use the following abbreviations: swapmax(X; Y) := (max(x

1

; y

1

); : : : ;max(x

n

; y

n

)) and

swapmin(X; Y) := (min(x

1

; y

1

); : : : ;min(x

n

; y

n

)).

Let bit(i; b) be the value of bit b

i

in the binary representation of b = b

dlog(b)e

; : : : ; b

i

; : : : ; b

0

.

The local sorting of n keys on each application processor is done by \radix sort". We use

one-dimensional arrays A

i

of size n to store the keys and distribute them evenly over the

shared memory modules. Let � denote the exclusive-or function.

Program of application processor i:

read the keys of the global array A

i

if bit(0,i) = 0 then sort local (x

1

; : : : ; x

n

) in increasing order

else sort local (x

1

; : : : ; x

n

) in decreasing order

for j := 1 to log(p) do

for s := (j � 1) downto 0 do

synchronize all application processors

write the keys (x

1

; : : : ; x

n

) into the global array A

i

synchronize all application processors

read the keys (y

1

; : : : ; y

n

) from the global array A

s

if (bit(s; i) � bit(j; i)) = 1

then (x

1

; : : : ; x

n

) := swapmax((x

1

; : : : ; x

n

), (y

1

; : : : ; y

n

))

else (x

1

; : : : ; x

n

) := swapmin((x

1

; : : : ; x

n

), (y

1

; : : : ; y

n

))

if bit(j,i) = 0 then sort local (x

1

; : : : ; x

n

) in increasing order

else sort local (x

1

; : : : ; x

n

) in decreasing order

synchronize all application processors

write the keys (x

1

; : : : ; x

n

) into the global array A

i

Let l be the packet size and k the send hot spot. All application processors are involved in

each k-k-access, therefore, r is equal to one. The communication time can now be estimated

by the term

T

bitonic

(k; l) = 2 �

l

n

k � l

m

� T

k-k

(k; l; r) +

log(p)

X

i=1

2i �

l

n

k � l

m

� T

k-k

(k; l; r)

= (2 + log

2

(p) + log(p)) �

l

n

k � l

m

� T

k-k

(k; l; r) :

6.4. Sample Sort 23

6.4 Sample Sort

Sample sort or splitter sort is a randomized sorting algorithm due to Blelloch, Leiserson,

and Maggs [7]. For simplicity we assume that N = n � p for some integer n. The basic idea

of this sorting algorithm is to split the N numbers (or keys) into p sequences S

0

; : : : ; S

p�1

,

such that the sequences have approximately the same length and all the keys of sequence S

i

are smaller than all the keys of sequence S

j

if i < j.

Each processor takes a sample of size s =

1

64

n of its own n keys at random and sends this

sample to one selected processor. This selected processor sorts these p � s sample elements,

choose every s-th element of the sorted samples as an splitter element (this gives us splitter

elements s

0

; : : : ; s

p�1

), and broadcasts them to all processors. Then each processor can

distribute its own keys to the p processors in such a way that the key x

j

is in sequence S

k

if s

k�1

< x

j

� s

k

. In a last step processor i has to sort the sequence S

i

. The algorithm is

described in detail in [9]. The local sorting of the keys on each processor is done by \radix

sort".

If the entire sample size is greater than 32 � p (as it is the case for our choice of s) then

with high probability the data is split into pieces no larger than 2n. Therefore, we use

one-dimensional arrays A

i

of size 2n to store the keys which are evenly distributed over the

global variables at the beginning.

Program of application processor i:

splitter phase:

read n keys from the global array A

i

(1)

choose s keys at random

write the s samples into the global array B

i

(2)

synchronize all application processors

if i = 0 then

read the p sample sequences of size s from the global arrays B

0

; : : : ; B

p�1

(3)

sort the p � s elements and choose every s-th element

write the p splitter elements into the global array B

0

(4)

distribution phase:

synchronize all application processors

if i 6= 0 then

read the p splitter elements s

0

; : : : ; s

p�1

from the global array B

0

(5)

write element x

j

into the global array A

k

if s

k�1

< x

j

� s

k

(6)

local sort:

synchronize all application processors

read the keys from the global array A

i

(7)

sort the keys

write the sorted keys into the global array A

i

(8)

To overcome distributing the keys one by one to the application processors in step (6) we

split this step into three parts. First, each application processor i writes its own keys into p

local lists L

0

; : : : ; L

p�1

. Then it writes the lengths of these lists into a global array stored in

the shared memory module i (6a). After a synchronization of all application processors each

application processor reads the length of every list of every other application processor (6b).

24 6. Precision of the model

This enables each application processor to compute the memory allocation where it has to

store each of its own lists. Then each list L

i

is written into the global array A

i

at the right

destination (6c). That means, application processor i stores its local lists L

j

in the global

array A

j

; 0 � j � p� 1, at the right destination.

Let l be the packet size and k the send hot spot. Each application processor potentially

has to sort a di�erent number of keys, so let E(s; n) denote the expansion factor, i.e., the

ratio of the maximum number of keys to sort by a single application processor to n. Thus,

E(s; n) � n is the number of elements one application processor has to sort at most. Then

the communication time of the single steps can be estimated by the following terms.

T

(1)

:

�

n

k�l

�

� T

k-k

(k; l; r = 1) T

(6a)

: T

k-k

(k = 1; l = p; r = 1)

T

(2)

: T

k-k

(k = 1; l = s; r = 1) T

(6b)

: T

k-k

(k = p; l = p; r = 1)

T

(3)

: T

k-k

(k = p; l = s; r = 1=p) T

(6c)

:

�

n

k�l

�

� T

k-k

(k; l; r = 1)

T

(4)

: T

k-k

(k = 1; l = p; r = 1=p) T

(7)

:

l

E(s;n)�n

k�l

m

� T

k-k

(k; l; r = 1)

T

(5)

: T

k-k

(k = 1; l = p; r = 1) T

(8)

:

l

E(s;n)�n

k�l

m

� T

k-k

(k; l; r = 1)

The total communication time of the algorithm is the sum of the single communication times.

6.5 Valuation of the results

The ascertained di�erences between measured and predicted runtimes of k-k-accesses are

listed in Table 2. We de�ne the error as

T

theor

�T

exp

T

exp

, where T

theor

denotes the predicted

and T

exp

the measured communication time. One can see that the error is less than 10% if

indirect service networks (like BF) are used. The inaccuracy is much greater if direct service

networks are used. The reasons for this are given below.

Network

Connected components Bitonic sort

T

bfs

T

merge

T

bitonic

SE(3) 321.91 % 60.93 % 57.27 %

SE(6) 627.52 % 208.27 % 13.70 %

CCC(4) 545.42 % 178.42 % 16.44 %

BF(3) 9.15 % 3.57 % 2.42 %

Network

Matrix Multiplication Sample Sort

without sync. with sync. splitter phase distribution phase local sort

SE(3) 26.44 % 17.73 % 269.13 % 72.15 % 515.96 %

SE(6) 51.71 % 31.62 % 190.01 % 63.61 % 1093.8 %

CCC(4) 67.91 % 51.05 % 159.13 % 60.39 % 934.60 %

BF(3) 0.786 % 3.75 % 10.28 % 79.44 % 32.49 %

Table 2: Di�erences between measured and predicted runtimes of a k-k-access.

6.5. Valuation of the results 25

The inuence of synchrony on the precision of the model. The precision of the

model is good if the application processors are highly synchronized. If the application pro-

cessors are synchronized before they access some data from global variables then all the

application processors access the shared memory almost at the same time and the value of

parameter r can be estimated precisely by r = 1. If they are not synchronized some applica-

tion processors still do some communication while others do not because they have already

�nished or not yet started their communication. So the contention is smaller in the �rst part

and in the last part of the routing, which means r < 1, but there is no hope to determine

the right value of r, so this leads to an error in the predicted runtime (cf. Table 2, Matrix

Multiplication).

The inuence of data locality on the precision of the model. Indirect service net-

works are described very precisely by our model. Each application processor is equally distant

from all the shared memory modules and thus there is no notion of locality. The enormous

di�erences in the case of modeling direct service networks can be explained by the lack of

modeling data locality. If each access to the global memory is addressed to the service pro-

cessor nearby there is just one link to cross for the packets and there is no contention in the

network. Our model assumes that the locations of shared memory accesses are distributed

evenly over all service processors. So the predicted communication times relate to average

paths lengths. In the case of k-accesses where each application processor is allowed to access

every shared memory module we get an average path length of

H

k

=

1

p

2

X

i;j

d(i; j)

where p denotes the number of application processors, and d(i; j) the distance between

application processor i and shared memory module j. In the case of k-k-accesses where for

any f 2 F

k

and �xed j

0

the function f(i; j

0

) to be routed is a permutation, so that the

destinations of the accesses are distinct, we get an average path length of

H

k-k

=

1

p!

p!

X

i=1

max

1�j�p

fd(j; �

i

(j))g

where �

i

denotes a permutation �

i

: [1; p] �! [1; p] and �

i

6= �

j

if i 6= j. Applied to indirect

service networks both values are the same because the share memory modules are equally

distant from the processors, so d(i; j) and d(j; �

i

(j)) are equal to the diameter of the network

for each i and j. Both cases imply network contention and a distance greater than 1 for

the packets to travel. For example, the average path length for a Shu�e-Exchange service

network of dimension 3 in the case of k-accesses is � 2:1, while it is � 3:7 in the case

of k-k-accesses. If we take into account some further inaccuracy because of the neglected

network contention we expect that the predicted access time is up to 4 times the measured

communication time in the case of k-k-accesses (cf. Table 2, row SE(3), column T

bfs

). This

fact shows that modeling data locality is essential for a good prediction of access times in

the case that direct service networks are used.

The inuence of communication patterns on the precision of the model. The dif-

ferences between predicted and measured communication times are small if the destinations

26 7. Minimizing the routing time with use of the cost model

of the accesses to global variables are evenly spread over the shared memory modules. This

is another case where our model describes the access time in direct service networks very pre-

cisely. If the amount of accessed data is not equally large for each application processor, as

it is the case in the distribution phase of \sample sort", this leads to errors in the prediction

of communication times because our model does not consider irregular communications.

Discussion. Our model tries to close the gap between the synchrony of the BSP model

and the asynchrony of the LogP model; the asynchrony is large in the case that the send

hot spot k is large. Other situations with two further parameters for more general hot spots

(in the case of k-accesses) and asynchrony are investigated. In many cases our model is well

suited to predict communication times precisely, it is easy to handle, and many situations

in parallel programming can be described. Our cost model includes essential parameters in

the right combination and neglect non-essential parameters. In the next section we support

this by deducing rules for the e�cient use of the service network with the help of our model

and we validate these rules in practice.

One drawback of our model is the di�culty to determine the right value of r if the application

processors are not synchronized which results in inaccurate prediction. Another drawback is

that irregular communication patterns can not be modeled. But the main drawback is the

lack of modeling data locality.

7 Minimizing the routing time with use of the cost

model

As we mentioned in Section 2 the choice of the number and size of packets and the send hot

spot has a great inuence on the communication time.

We now determine the optimal size k

0

of send hot spot and size l

0

of packets in order to access

a �xed amount of data D = k

0

l

0

(e.g., a global variable of size 10000 integers) from shared

memory modules with minimal communication time. All application processor accesses the

same amount of data from distinct shared memory modules, therefore, the value of parameter

r is one.

To determine the optimal packet size l

0

and the size k

0

of send hot spots it is necessary to

determine the minimum of the trilinear function T

k-k

(k; l; r). In the case of r = 1 the latency

for a k-k-access is described by T

k-k

(k; l; r) = a

3

�kl+a

2

� l+a

1

�k+a

0

for some a

3

; : : : ; a

0

(to

obtain from Table 1). The derivation of the function T

k-k

(k =

D

l

; l; 1) in order to determine

the minimum yields the optimum at:

k

0

=

r

a

2

a

1

�D , l

0

=

r

a

1

a

2

�D

In fact, this is a rule for the e�cient use of service networks. Each time a processor wants to

access D items from a global variable the access has to split into k

0

accesses which produces

packets of size l

0

each.

As can be seen in Figure 13 the precision of the prediction is quite good. The existence

of the optimum and the form of the curve are predicted well. As we expect, the graphs of

Figure 3 (page 8) and Figure 13 are very similar.

27

60

80

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60 70

T

Z

[ms]

send hot spot k

measured

predicted

Figure 13: Send hot spot and the packet size inuence the communication time (BF(3),

D = 10000).

Optimization of the routing. The amount D of data which has to be accessed from the

shared memory modules is given by the application program (e.g., size of global variables).

In general the programmer chooses parameters r; k, and l by himself (as we did in our

algorithms above), thus D = kl. This means that the router sends successively k packets

each of size l in order to access the global variable.

We extend the implemented routing in that way that the router determines values for l

0

and k

0

on-line in the case that all processors accesses global variables (r = 1). The optimal

values of the packet size l

0

and of the size k

0

of send hot spots depend on the amount of

data D, on the kind of network used, and on the number of accessing processors.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

16 64 256 1024 4096 16384 65536

size of global variable D [INT]

total

version 3

version 2

(a) SE(6).

0.5

1

1.5

2

2.5

3

3.5

16 64 256 1024 4096 16384 65536

size of global variable D [INT]

total

version 3

version 2

(b) SE(3).

Figure 14: Achieved speed ups for Shu�e-Exchange networks.

Before doing this in a �rst optimization step we split each access to global variables into

packets of size 4 kByte each and send them one after the other to their destination. Figure

14 (graph \version 2") shows the speed up yielded by this optimization compared with the

case of accessing the items in one access.

In a second optimization step the router determines the optimal values for l

0

and k

0

. Figure

14 (graph \version 3") shows the speed up yielded by this optimization compared with the

case of sending packets of size 4 kByte. The graph \total" shows the achieved speed up by

this optimization compared with the case of accessing the items in one access (k = 1; l = D).

28 REFERENCES

Because of the complicated on-line computation of the right packet size the communication

time for short packets increases. If the size of the variable is greater than 128 integer, the

access time decreases signi�cantly. If the size is greater than 16384 integer the communication

time can not be reduced any further because the pipelining e�ect is exhausted, the network

is �lled with packets. The optimal packet size of k-accesses or in the case r < 1 can be

determined in the same way.

8 Conclusions

In this report we proposed a new cost model that allows precise predictions of communication

times on parallel computers consisting of processors and special purpose routing hardware.

It was shown that all important parameters, such as network contention and packet size,

are taken into account. These parameters are described in such a way that the analysis of

programs is feasible. So the model strikes a balance between detail and simplicity.

We motivated and validated all parameters of the model by showing their inuences on the

communication time. It turns out that the packet size has a great inuence on the e�ciency

of routing. So we determined the optimal packet size by deriving the trilinear function

delivered by our model. To further improve our model one can add another multilinear

function that describes the behavior of parallel computers if data locality can be used.

The interaction between asynchrony and receive hot spots is described in detail. We showed

that in most situations receive hot spots do not inuence the communication time of programs

in a high degree.

Acknowledgments

We would like to thank Friedhelm Meyer auf der Heide, Willy - Bernhard Strothmann, and

Rolf Wanka for fruitful discussions.

References

[1] A. A., M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incorporating long

messages into the LogP model. In Proceedings of the 7th Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pages 95 { 105, 1995.

[2] A. Aggarwal, A. M. Chandra, and M. Snir. Communication complexity of PRAMs.

Theoretical Computer Science, pages 3 { 28, March 1990.

[3] A. Aggarwal, A.M. Chandra, and M. Snir. On communication latency in PRAM compu-

tation. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,

pages 11 { 21, 1989.

[4] F. Meyer auf der Heide and B. V�ocking. A packet routing protocol for arbitrary net-

works. Proceedings of the 12th STACS, pages 291 { 302, 1995.

[5] K. Batcher. Sorting networks and their applications. Proceedings of the AFIPS Spring

Joint Computing Conference, 1986.

REFERENCES 29

[6] Armin B�aumker, Wolfgang Dittrich, and Friedhelm Meyer auf der Heide. Truly e�-

cient parallel algorithms: c-optimal multisearch for an extension of the BSP model. In

Proceedings of the 3rd European Symposium on Algorithms (ESA), 1995.

[7] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.

A comparison of sorting algorithms for the connection machine CM-2. In Proceedings

of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),

pages 3{16, July 1991.

[8] L. Bomans, D. Roose, and R. Hempel. The Argonne/GMD macros in FORTRAN for

portable parallel programming and their implementation on the Intel iPSC/2. Parallel

Computing, (15):119 { 132, 1990.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subroma-

nian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.

Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Par-

allel Programming (PPOPP), pages 1{11, 1993. Also appears as TR No. UCB/CS/92

713.

[10] M. Fischer and J. Rethmann. Entwicklung und experimentelle Analyse eines

parametrisierten Rechenmodells zur Laufzeitvorhersage paralleler Algorithmen. Diplo-

marbeit Universit�at Paderborn, 1994.

[11] R. Funke, F. L�ucking, R. L�uling, B. Monien, and H. Blanke-Bohne. An optimized

recon�gurable architecture for transputer networks. In Proceedings of the 25th Hawaii

International Conference on System Sciences (HICSS), volume 1, pages 237 { 245, 1992.

[12] G. A. Geist and V. S. Sunderam. The PVM system: Supercomputer level concurrent

computation on a heterogeneous network of workstations. In 6th Annual Distributed-

Memory Computer Conference, pages 258 { 261, 1991.

[13] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms.

Tr-10-92, Aiken Computation Laboratory Harvard University, 1992.

[14] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms. In

Proceedings of the 3rd Scandinavian Workshop on Algorithm Theory (SWAT), pages 1

{ 18, 1992.

[15] P. B. Gibbons. A more practical pram model. In Proceedings of the ACM Symposium

on Parallel Algorithms, pages 158 { 168, 1989.

[16] R. M. Karp, M. Luby, and F. Meyer auf der Heide. E�cient PRAM simulation on

a distributed memory machine. In Proceedings of the Twenty-Fourth Annual ACM

Symposium of the Theory of Computing, pages 318{326, May 1992.

[17] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes. Morgan Kaufmann, San Mateo, 1992.

[18] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by

parallel machines with restricted granularity of parallel memories. Acta Informatica,

pages 339{374, 1984.

30 REFERENCES

[19] Message Passing Interface Forum. MPI: A Message Passing Interface Standard, May

1994.

[20] R. Miller. A library for bulk-bynchronous parallel programming. In Proceedings of the

British Computer Society Parallel Processing Specialist Group Workshop on General

Purpose Parallel Computing, 1993.

[21] L. G. Valiant. A bridging model for parallel computing. Communications of the Asso-

ciation for Computing Machinery, 33:103{111, 1990.

[22] A. Wachsmann. Eine Bibliothek von Basisdiensten f�ur Parallelrechner: Routing, Syn-

chronisation, gemeinsamer Speicher. Dissertation, Universit�at-GH Paderborn, 1995.

[23] A. Wachsmann and F. Wichmann. OCCAM-light { A multiparadigm programming

language for transputer networks. Reihe Forschergruppe 5, Universit�at-GH Paderborn,

April 1993.

[24] J. Woo and S. Sahni. Hypercube computing: Connected components. The Journal of

Supercomputing, 3(3):408{417, 1989.

